THERMAL AWARE LINK ENERGY EFFICIENT SCHEME FOR BODY AREA NETWORKS

Authors:

M. Javed,Asim Zeb,M.Shahzad, Asif Nawaz,Ahmed Ali Shah,Zeeshan Rasheed, Naveed Jan,Atif Ishtiaq,Sheeraz Ahmed,

DOI NO:

https://doi.org/10.26782/jmcms.2020.12.00009

Keywords:

Wireless Body Area Networks,Delay,Thermal aware,

Abstract

A daunting task in Wireless Body Area Networks (WBANs) is still to develop Effective routing techniques. Small-sized nodes are installed on or within the human body to monitor human health conditions which then deliver the data to servers for analysis. During sensing and data transfer, biomedical sensors work continuously and the temperature of the nodes may rise beyond the threshold limit. This temperature rise may damage the human body tissues as well as the routing mechanism in terms of path losses. To keep the temperature at its normal working value, a priority-based selection of routes is required to prevent data loss during transmission. This will ensure safe and accurate data delivery at the destination. A protocol called "Thermal Aware Link Energy Efficient Scheme for WBANs” (TALEEBA) for workers is proposed to monitor the health of workers in factories. One of the four sinks will collect the data of the nearest worker in the field. As the body temperature of any worker is detected to rise, an alarm will be generated and the supervisor of the workplace will ask the worker to be replaced by some other worker. The same mechanism will continue till the task ends. Our proposed TALEEBA (Thermal Aware Link Energy Efficient Scheme for WBANs) scheme is aligned with current LAEEBA and THE-FAME WBAN schemes. In simulations, we analyze our protocol in terms of stability period, network lifetime, residual energy, a packet sent, packet dropped, and throughput. Hence, the results show stability and network life 50%, a packet sent 20% and throughput 23% are improved in comparison with LABEEA and THE-FAME protocols.

Refference:

I. Abidi, Bahae, Abdelillah Jilbab, and El Haziti Mohamed. “Wireless body area networks: a comprehensive survey.” Journal of Medical Engineering & Technology: 1-11. 2020.
II. Ahmad, Ashfaq, Nadeem Javaid, Umar Qasim, Mohammad Ishfaq, Zahoor Ali Khan, and Turki Ali Alghamdi. “RE-ATTEMPT: a new energy-efficient routing protocol for wireless body area sensor networks.” International Journal of Distributed Sensor Networks 10, no. (4)): 464010. 2014.

III. Ahmed, S., Nadeem Javaid, Mariam Akbar, Adeel Iqbal, Zahoor Ali Khan, and U. Qasim. “LAEEBA: Link aware and energy efficient scheme for body area networks.” In 2014 IEEE 28th International Conference on Advanced Information Networking and Applications, pp. 435-440. IEEE, 2014.
IV. Akram, Sana, Nadeem Javaid, Anum Tauqir, Areeba Rao, and Saad Noor Mohammad. “The-fame: Threshold-based energy-efficient fatigue measurement for wireless body area sensor networks using multiple sinks.” In 2013 Eighth International Conference on Broadband and Wireless Computing, Communication and Applications, pp. 214-220. IEEE, 2013.
V. Amin, Bahrul, Najeeb Ullah, Sheeraz Ahmed, Muhammad Taqi, and Abdul Hanan. “Path-Loss and Energy Efficient Model (PLEEM) for wireless body area networks (WBANs).” In 2017 International Symposium on Wireless Systems and Networks (ISWSN), pp. 1-6. IEEE, 2017.
VI. Bilandi, Naveen, Harsh K. Verma, and Renu Dhir. “AHP–neutrosophic decision model for selection of relay node in wireless body area network.” CAAI Transactions on Intelligence Technology 5, no. (3): 222-229. 2020.
VII. Brix, Gunnar, Martin Seebass, Gesine Hellwig, and Jürgen Griebel. “Estimation of heat transfer and temperature rise in partial-body regions during MR procedures: an analytical approach with respect to safety considerations.” Magnetic resonance imaging 20, no. (1): 65-76. 2002.
VIII. Chen, Min, Sergio Gonzalez, Athanasios Vasilakos, Huasong Cao, and Victor CM Leung. “Body area networks: A survey.” Mobile networks and applications 16, no. (20): 171-193. 2011.
IX. de Oliveira Brante, Glauber Gomes, Marcos Tomio Kakitani, and Richard Demo Souza. “On the energy efficiency of some cooperative and non-cooperative transmission schemes in WSNs.” In 2011 45th Annual Conference on Information Sciences and Systems, pp. 1-6. IEEE, 2011.
X. Gupta, Sandeep KS, Suresh Lalwani, Yashwanth Prakash, E. Elsharawy, and Loren Schwiebert. “Towards a propagation model for wireless biomedical applications.” In IEEE International Conference on Communications, 2003. ICC’03., vol. 3, pp. 1993-1997. IEEE, 2003.
XI. Hasan, Khalid, Kamanashis Biswas, Khandakar Ahmed, Nazmus S. Nafi, and Md Saiful Islam. “A comprehensive review of wireless body area network.” Journal of Network and Computer Applications (143): 178-198. 2019.

XII. Ilyas Khan, Majid Ashraf, Asif Nawaz, Rehan Ali Khan, M.Habib Ullah, Wisal Khan, Sheeraz Ahmed, : DUAL SINK BASED ROUTING SCHEME FOR RELIABLE DATA DELIVERY AND LOS COMMUNICATION IN WBANS, J. Mech. Cont.& Math. Sci., Vol.-15, No.-6, June (2020) pp 449-467
XIII. Javaid, Nadeem, Z. Abbas, M. S. Fareed, Zahoor Ali Khan, and N. Alrajeh. “M-ATTEMPT: A new energy-efficient routing protocol for wireless body area sensor networks.” Procedia Computer Science (19): 224-231. 2013.
XIV. Katayama, Norihiko, Kenichi Takizawa, Takahiro Aoyagi, Jun-ichi Takada, Huan-Bang Li, and Ryuji Kohno. “Channel model on various frequency bands for wearable body area network.” IEICE transactions on communications 92, no. (2): 418-424. 2009.
XV. Khan, Naveed A., Nadeem Javaid, Zahoor Ali Khan, M. Jaffar, U. Rafiq, and Ayesha Bibi. “Ubiquitous healthcare in wireless body area networks.” In 2012 IEEE 11th International Conference on Trust, Security and Privacy in Computing and Communications, pp. 1960-1967. IEEE, 2012.
XVI. Kim, Beom-Su, Kyong Hoon Kim, and Ki-Il Kim. “A survey on mobility support in wireless body area networks.” Sensors 17, no. (4)): 797. 2017.
XVII. Muhammad Aadil, Sheeraz Ahmed, Muhammad Zubair, M.Saeed Hussain kakar, Muhammad Junaid, Ata-ur-Rehman, : iBTTA: IMPROVED BODY TISSUES TEMPERATURE AWARE ROUTING SCHEME FOR WBANs, J.Mech.Cont.& Math. Sci., Vol.-14, No.-1, January-February (2019) pp 37-52.
XVIII. Nadeem, Qaisar, Nadeem Javaid, Saad Noor Mohammad, M. Y. Khan, Sohab Sarfraz, and M. Gull. “Simple: Stable increased-throughput multi-hop protocol for link efficiency in wireless body area networks.” In 2013 Eighth International Conference on Broadband and Wireless Computing, Communication and Applications, pp. 221-226. IEEE, 2013.
XIX. Shahbazi, Zeinab, and Yung-Cheol Byun. “Towards a secure thermal-energy aware routing protocol in Wireless Body Area Network based on blockchain technology.” Sensors 20, no. (12): 3604. 2020
XX. Taha, Mustafa Sabah, Mohd Shafry Mohd Rahim, Mohammed Mahdi Hashim, and Fadil Abass Johi. “Wireless body area network revisited.” International Journal of Engineering & Technology 7, no. (4) : 3494-3504. 2018.
XXI. Tang, Qinghui, Naveen Tummala, Sandeep KS Gupta, and Loren Schwiebert. “TARA: thermal-aware routing algorithm for implanted sensor networks.” In International conference on distributed computing in sensor systems, pp. 206-217. Springer, Berlin, Heidelberg, 2005.
XXII. Tauqir, Anum, Nadeem Javaid, Sana Akram, Areeba Rao, and Saad Noor Mohammad. “Distance aware relaying energy-efficient: Dare to monitor patients in multi-hop body area sensor networks.” In 2013 Eighth International Conference on Broadband and Wireless Computing, Communication and Applications, pp. 206-213. IEEE, 2013.
XXIII. Ullah, Sana, Henry Higgins, Bart Braem, Benoit Latre, Chris Blondia, Ingrid Moerman, Shahnaz Saleem, Ziaur Rahman, and Kyung Sup Kwak. “A comprehensive survey of wireless body area networks.” Journal of medical systems 36, no. (3): 1065-1094. 2012.
XXIV. Zang, Weilin, Fen Miao, Raffaele Gravina, Fangmin Sun, Giancarlo Fortino, and Ye Li. “CMDP-based intelligent transmission for wireless body area network in remote health monitoring.” Neural computing and applications 32, no. (3): 829-837. 2020.

View Download