Authors:
Sahar MuhsenJaabar,DOI NO:
https://doi.org/10.26782/jmcms.2020.08.00003Keywords:
Variational inequality,EVI first type,EVI second type,Friction Problem,Convex series,Abstract
The study investigated variational inequality of the elliptic to the second type of "A Simplified Friction Problem". The operator of the second arrangement partial differential was coupled within elliptic variational inequality. It gives the mathematical and physical demonstration and some characteristics of the solution. The study highlighted the presence, singularity and the second type of EVI solutions characteristic.Refference:
I. Armstrong-Hélouvry, Brian (1991). Control of machines with friction. Springer .
II. Brezis,H.(1968), Equations et Inequations Non Lineaires dans les EspacesVectorielsenDualite. Ann.Inst.Fourier,vol.18,pp. 115-175.
III. Dowson, Duncan (1997). History of Tribology, 2nd Edition. Wiley; 2 edition (March 6, 1998).
IV. J. L. Lions and G. Stampacchia.(1967), variational Inequalities, comm.on Pure and Applied Math., Vol XX, PP.493-519.
V. M. Chipotand G., Michaille, (1989), Uniqueness results and monotonicity properties for strongly nonlinear elliptic variational inequalities, AnnalidellaScuolaNormaleSuperiore di Pisa,4(16), pp. 137-166.
VI. Meriam, J. L and L. G. Kraige. (2002), Engineering Mechanics (fifth ed.). John Wiley & Sons.
VII. R. C. Hibbele, (2007). Engineering Mechanics, (Eleventh ed.). Pearson, Prentice Hall.
VIII. Ruina, Andy and Rudra Pratap (2002). Introduction to Statics and Dynamics. Oxford univiristy press.
IX. Stuart S. Antman,(1983),” The Influence of Elasticity in Analysis :Modern Developments”, American Mathematical society 9 (3), pp 267-291.
X. Van Beek, Anton. “History of Science Friction”. tribology-abc.com.