DEVELOPMENT OF THE TRAWL CONTROLLED SYSTEM WITH FLEXIBLE SPREADING DEVICES

Authors:

Anatoliy N. Boitsov,EvgeniyV.Osipov,AnatoliyI.Shevchenko,SvetlanaV.Lisienko,VladimirE.Valkov,

DOI NO:

https://doi.org/10.26782/jmcms.spl.10/2020.06.00039

Keywords:

Flexible spreading devices,trawl system,trawl system control,

Abstract

A Special Issue on “Quantative Methods in Modern Science” organized by Academic Paper Ltd.,Russia.  
The flexible spreading device for replacing the boards in the trawl fishing systems was developed at the beginning of the 1990s and, as a result, the these devices could be used only during the coastal fishery, since the device was developed by means of experimental research. However, the flexible spreading devices failed to get a more widespread use because there were no calculation methodologies. So, this paper is aimed at developing the calculation methodologies of the flexible spreading devices and their control system. Two methodologies of calculating the flexible spreading devices are offered, the first methodology makes it possible, with the knowledge of an area and hydrodynamic characteristics of the trawl boards, to calculate the design characteristics of the flexible spreading devices, while the second methodology makes it possible, with the use of the aggregate trawl resistance with the specified design values, to calculate the design characteristics of the flexible spreading devices. The results of calculating the projected areas of the flexible spreading devices on two methodologies are coinciding with each other, which confirms the adequacy of the offered methodologies of calculating the projected areas of the flexible spreading devices, since the trawl developers took into account the tractive and speed characteristics of the vessels and the characteristics of the trawl boards as a whole. The results of calculating the control system of the flexible spreading devices on the methodology, which is offered in the paper, in comparison with the experimental research conducted are differing in 2%. As the methodologies are convenient, the factory workers were able to calculate and to made the flexible spreading devices according to these methodologies, and the fishery with those devices made it possible to increase the trawling speed by 1 knot and, as a consequence, to increase the takes by 10-15%.  

Refference:

I. BoitsovА.N.,VisyaginО.А. Research of thehydrodynamicspreading devices. Monograph – Vladivistok: Far Eastern State Technical Fisheries University, 2013.- 86 p. [BoitsovА.N., VisyaginО.А.Issledovaniagidrodinamicheskikhraspotnykhustroistv. Monog. – Vladivostok: Dalrybvtuz, 2013.-86 s.] Бойцов А.Н., ВисягинО.А. Исследования гидродинамических распорных устройств. Моног. – Владивосток: Дальрыбвтуз, 2013.- 86 с.
II. Trawl fishing gear and trawl fishing method/Patent US 5444933. Inventor: Hiromi Kinoshita, Yoshiki Matsushita, Yoshihiro Inoue, Zykin V. Ignatyevich, Kim I. Dmitrievich, Boytcov A. Nikolaevich, Visyagin O. Anatolyevich.

III. KudakaevV.V.,OsipovЕ.V.,BoitsovА.N. Results of the research offlexiblespreadingshieldsfor horizontal openingof the trawl system // Important problems ofthe world-wide ocean biological resources development: International scientific conference. – Vladivistok: Far Eastern State Technical Fisheries University, 2010. – P. 215-219.[Kudakaev V.V., OsipovЕ.V., BoitsovА.N.Rezultatyissledovaniigibkikhraspornykhschitkovdlyagorizontalnogoraskrytiatralovoisistemy // Aktualnyeproblemyosvoeniabiologicheskikhresursovmirovogookeana: Mezhdunar. nauch. konf. – Vladivistok: Dalrybvtuz, 2010. – S. 215-219.] КудакаевВ.В., Осипов Е.В., Бойцов А.Н. Результаты исследований гибких распорных щитков для горизонтального раскрытия траловой системы // Актуальные проблемы освоения биологических ресурсов мирового океана: Междунар. науч. конф. – Владивосток: Дальрыбвтуз, 2010. – С. 215-219.
IV. O’Neill, F. G. 1997 Differential equations governing the geometry of a diamond mesh cod-end of a trawl net. ASME J. Appl. Mech. 64, 7-14.
V. Yinglong Chen, Yeming Yao, Zengmeng Zhang, Hua Zhou. Numerical Analysis of a Mid-Water Trawl System With a 6-DOF Otter Board Model and Sea-Trial Verification/ IEEE. Received September 11, 2018, accepted November 3, 2018, date of publication November 6, 2018, date of current version December 7, 2018.
VI. J. Prat, J. Antonijuana, A. Folchb, A. Salac, A. Lucchetti, F. Sardà, A. Manuel. A simplified model of the interaction of the trawl warps, the otterboards and netting drag./FisheriesResearch 94 (2008) 109–117.
VII. Ming-Fu Tang, Guo-Hai Dong, Tiao-Jian Xu1, Yun-Peng Zhao, Chun-Wei Bi. Numerical Simulation of the Drag Force on the Trawl Net/ Turkish Journal of Fisheries and Aquatic Sciences 17:1219-1230(2017)
VIII. Haugen, Joakim&Grimaldo, Eduardo & H Gjøsund, Svein. (2017). A Winch Reference Control System for Semi-Pelagic Triple Trawling: With Full-Scale Sea Trials. 10.1115/OMAE2017-61167.
IX. KuznetsovМ.Yu.,PolyanichkoV.I., SyrovatkinЕ.V., ShevtsovV.I. Peculiarities ofthe space distributionand behavior oftheJapanesemackereland the Far EasternsardineintheKuril waters of the Northwestpart of thePacificOceanin summer of 2015-2016// Fishing industry. 2017 No. 2. – P. 56-62. [KuznetsovМ.Yu.,PolyanichkoV.I., SyrovatkinЕ.V., ShevtsovV.I. Osobennostiprostranstvennogoraspredeleniaipovedeniayaponskoiskumbriiidalnevostochnoisardinyvprokurilskikhvodakhsevero-zapadnoichastiTikhogookeanav letnii period 2015-2016 gg.// Rybnoekhozyaistvo. 2017 No. 2. – S. 56-62.] Кузнецов М.Ю., Поляничко В.И., СыроваткинЕ.В., Шевцов В.И. Особенности пространственного распределения и поведения японской скумбрии и дальневосточной сардины в прикурильских водах северо-западной части Тихого океана в летний период 2015-2016 гг.// Рыбноехозяйство. 2017 №2. – С. 56-62.
X. Chen, Yinglong& Zhou, Hua& Zhao, Yong-gang &Hou, Jiao-yi. (2014). Fuzzy robust path tracking strategy of an active pelagic trawl system with coordinated ship and winch regulation. Journal of Central South University. 21. 167-179. 10.1007/s11771-014-1928-1.
XI. BoitsovА.N.,OsipovЕ.V., KudakaevV.V. Methodology of designingthe flexible spreadingdeviceforhorizontalopening of the trawls./Scientific papers of Far Eastern State Technical Fisheries University. Vladivistok: Far Eastern State Technical Fisheries University, 2011, V.23, P. 64-68. [BoitsovА.N.,OsipovЕ.V., Kudakaev V.V. Metodikaproektirovaniagibkogoraspornogoustroistvadlyagorizontalnogoraskrytiatralov./NauchnyetrudyDalrybvtuza. Vladivistok: Dalrybvtuz, 2011, V.23, S. 64-68.] Бойцов А.Н., Осипов Е.В., КудакаевВ.В. Методика проектирования гибкого распорного устройства для горизонтального раскрытия тралов./ Научные труды Дальрыбвтуза. Владивосток: Дальрыбвтуз, 2011, В.23, С. 64-68.
XII. Similarity Methods in Engineering Dynamics. Theory and Practice of Scale Modeling. Edited by Wilfred E. BAKER, Peter S. WESTINE, Franklin T. DODGE. Volume 12,Pages 1-384 (1991)
XIII. Zhang Xiangyi and Yang Xuanfang, “Research on wave disturbance in integrated control system,” 2015 Chinese Automation Congress (CAC), Wuhan, 2015, pp. 1533-1538. doi: 10.1109/CAC.2015.7382744
XIV. V. Johansen, O. Egeland, and A. J. Sorensen, “Modelling and control of a trawl system in the transversal direction,” in Control Applications in Marine Systems 2001, pp. 243–248, 2002.
XV. K. J. Reite and A. J. Sorensen, “Hydrodynamic properties important for control of trawl doors,” in Proceedings of the IFAC Conference on Control Applications in Marine System (CAMS ’04), pp. 143–148, Ancona, Italy, 2004.
XVI. K. J. Reite, Modeling and control of trawl systems [Ph.D. thesis], Norwegian University of Science and Technology, Trondheim, Norway, 2006.
XVII. H.-H. Park, “A method for estimating the gear shape of a mid-water trawl,” Ocean Engineering, vol. 34, no. 3-4, pp. 470–478, 2007.
XVIII. H. Zhou, Y.-L. Chen, and H.-Y. Yang, “Robust optimal output tracking control of a midwater trawl system based on T-S fuzzy nonlinear model,” China Ocean Engineering, vol. 27, no. 1, pp. 1–16, 2013
XIX. H.-J. Wang, Z.-Y. Chen, H.-M. Jia, and J. Li, “Three-dimensional path-following control of underactuated unmanned underwater vehicle using feedback gain backstepping,” Control Theory & Applications, vol. 31, no. 1, pp. 66–77, 2014.
XX. B. Sun, D.-Q. Zhu, and Z.-G. Deng, “Bio-inspired discrete trajectory-tracking control for open-frame underwater vehicles,” Control Theory & Applications, vol. 30, no. 4, pp. 454–462, 2013.
XXI. Y. L. Chen, Research on Modeling and Control Strategies for the Trawling System, Zhejiang University, Hangzhou, China, 2013.
XXII. GabryukV.I.,KulaginV.D. Mechanics ofthe fishery toolsandARM of theprofessional fisherman. М.:Kolos, 2000. – 416 p. [GabryukV.I.,KulaginV.D. MekhanikaorudiyrybolovstvaiARMpromyslvika. М.:Kolos, 2000. – 416 s.] ГабрюкВ.И., Кулагин В.Д. Механика орудий рыболовства и АРМ промысловика. М.:Колос, 2000. – 416 с.

View | Download