Authors:
Kanak Ray Chowdhury,Abeda Sultana ,Nirmal Kanti Mitra ,A F M Khodadad Khan,DOI NO:
https://doi.org/10.26782/jmcms.2014.07.00006Keywords:
lattice,semiring, MATLAB,Abstract
In this paper, connection between lattice and semiring are investigated. This is done by introducing some examples of lattice and semirings. Examples and results are illustrated. In some cases we have used MATLAB.Refference:
I. Reutenauer C.and Straubing, H. Inversion of matrices over a commutative semiring, J. Algebra, 88(1984) 350-360.
II. Rutherford, D.E. Inverses of Boolean matrices, Proc Glasgow Math Asssoc., 6 (1963) 49-53.
III. Birkhoff, G. Lattice theory, rev. ed., Colloquium Publication No. 25, Amer. Math. Soc., Newyork 1948
IV. Goodearl, K. R. Von Neumann Regular Rings, Pitman, London, 1979.
V. Fang, Li Regularity of semigroup rings, Semigroup Forum, 53 (1996) 72-81.
VI.Petrich, M Introduction to Semiring, Charles E Merrill Publishing Company, Ohio, 1973.
VII. Sen M. K. and Maity, S. K. Reglar additively inverse semirings, Acta Math. Univ. Comenianae, LXXV, 1 (2006) 137-146
VIII. Karvellas, P.H. Inversive semirings, J. Austral. Math Soc., 18 (1974) 277-288.
IX. R.D Luce, A note on Boolean matrix theory, Proc Amer. Math Soc., 3(1952) 382-388.
X. R. M. Hafizur Rahman, Some properties of standard sublattices of a lattice, J. Mech. Cont. and Math. Sci., 6(1) (2011) 769-779
XI. Ghosh, S. The least lattice congruence on semirings, Soochow Journal of Mathematics, 20(3) (1994) 365-367.
XII. Ghosh, S. Another note on the least lattice congruence on semirings, Soochow Journal of Mathematics, 22(3) (1996) 357-362.
XIII. Vasanthi T. and Amala, M. Some special classes of semirings and ordered semirings, Annals of Pure and Applied Mathematics, 4(2) (2013) 145-159.
XIV. Vasanthi T. and Solochona, N. On the additive and multiplicative structure on semirings, Annals of Pure and Applied Mathematics, 3(1) (2013) 78-84.
Author(s) : Kanak Ray Chowdhury, Abeda Sultana , Nirmal Kanti Mitra and A F M Khodadad Khan View Download