State Space Analysis of a Solar Power Array Taking a Higher Degree Of Non-Linearity into Account

Authors:

Adhir Baran Chattopadhyay,Sunil Thomas,Aliakbar Eski,Ruchira Chatterjee ,

DOI NO:

https://doi.org/10.26782/jmcms.2014.07.00003

Keywords:

solar array power system ,non linear state variable model, forcing function,laplace transform,time response,

Abstract

This paper develops a mathematical technique for the solution of a non linear state variable model of a solar array power system powering a non linear load. The significance of the technique lies in the fact that experimental complexities can be avoided to reach a desired conclusion regarding the design of the controller associated with a solar power array system. An iterative method has been used in which the initiating assumption has been made to consider the system to depend entirely upon its initial values at the instant t = 0 and taking the forcing function to be zero at that instant. In the next step we use the solution at t = 0 and plug it into the equation iteratively while having a non zero value of the forcing equation during the second iteration. The non linearity lies in the fact that the forcing function is a function of the state variable itself. We have applied the Maclaurin series to find the laplace transform of certain mathematical functions containing a singularity at the zero time instant. The time response is obtained and then it is plotted by using MATLAB and various graphs have been obtained.

Refference:

I. Bae, H. S., J.H. Lee, S.H. Park and B.H. Cho, 2008. “Large-Signal Stability Analysis of Solar Array Power System”. IEEE Transactions on Aerospace and Electronic Systems, 44 Issue-2: 538-547. DOI: 10.1109/TAES.2008.4560205.

II. A. B. Chattopadhyay, A Choudhury, A. Nargund, 2011, “State Variable Model of a Solar Power System”, Trends in Applied Sciences Research, 563-579, DOI : 10.3923/tasr.2011.563.579

III. Bondar, D., D. Budimir and B. Shelkovnikov, 2008. “A new approach for non-linear analysis of power amplifiers”. In: 18th International Crimean Conference Microwave & Telecommunication Technology, 2008. Sevastopol, Crimea, 8-12 September 2008. IEEE, pp: 125 – 128.

IV. Bouchafaa, F., D. Beriber and M.S. Boucherit, 2010. “Modeling and control of a gird connected PV generation system”. In: 18th Mediterranean Conference on Control & Automation (MED), 2010. Marrakech. 23-25 June 2010. IEEE, pp: 315 – 320.

V. Chattopadhyay, A.B., S.S. Dubei and A. Bhattacharjee, 2005. “Modelling of DC-DC boost converter analysis of capacitor voltage dynamics”. A.M.S.E Journal, France, 78 no.6: 15-24.

VI. Chattopadhyay, A.B., S.S. Dubei, A. Bhattacharjee and K. Raman, 2009. “Modelling of DC-DC Boost converter state variable modeling and error analysis”. A.M.S.E Journal, France, Modelling Measurement & Control, 82 Issue-4: 1-16.

VII. Cho, B.H., J.R. Lee and F.C.Y. Lee, 1990. “Large-Signal Stability Analysis of Spacecraft Power Processing System”. IEEE Transactions on Power Electronics, 5 Issue-1: 110 – 116. DOI: 10.1109/63.46005.

VIII. Cho, Y.J. and B.H. Cho, 2001. “Analysis and design of the inductor-current-sensing peak-power-tracking solar array regulator”. AIAA Journal of Propulsion and Power, 17: 467—471.

IX. Hua, C. and C. Shen, 1998. “Comparative Study of Peak Power Tracking Techniques for Solar Storage System”. In: Thirteenth Annual Applied Power Electronics Conference and Exposition 1998. Anaheim, CA, USA. 15-19 February 1998. IEEE, pp: 679 – 685.

X. Huynh, P. and B. H. Cho, 1996. “Design and Analysis of a Microprocessor-Controlled Peak-Power-Tracking System”. IEEE Transactions on Aerospace and Electronic Systems, 32 Issue-1: 182-190. DOI: 10.1109/7.481260.

XI. Jensen, Michael, Russell Louie, Mehdi Etezadi-Amoli and M. Sami Fadali, 2010. “Model and Simulation of a 75kW PV Solar Array”. In: IEEE PES Transmission and Distribution Conference and Exposition 2010. New Orleans, LA, USA. 19-22 April 2010. IEEE, pp: 1 – 5.

XII. Mourra, O., A. Fernandez and F. Tonicello, 2010. “Buck Boost Regulator (B2R) for Spacecraft Solar Array Power conversion”. In: Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 2010. Palm Springs, CA, USA. 21-25 February 2010. IEEE, pp: 1313 – 1319.

XIII. Paulkovich, John, 1967. “Solar Array Regulators of Explorer Satellites XII, XIV, XV, XVIII, XXI, XXVI, XXVIII and Ariel I”. NASA Technical Note: 1 – 15.

XVI. Ramaprabha, R., B.L. Mathur and M. Sharanya, 2009. “Solar Array Modeling and Simulation of MPPT using Neural Network”. In: International Conference on Control, Automation, Communication and Energy Conservation, 2009. Perundurai, Tamil Nadu, India. 4-6 June 2009. IEEE, pp: 1 – 5.

XV.Siri, K. and K.A. Conner, 2002. “Parallel-Connected Converters with Maximum Power Tracking.” In: Seventeenth Annual IEEE Applied Power Electronics Conference and Exposition 2002. Dallas, TX, USA. 10-14 March 2002. IEEE, pp: 419 – 425.

XVI. Siri, K., 2000a. “Study of System Instability in Solar-Array-Based Power Systems”. IEEE Transactions on Aerospace and Electronics Systems, 36 Issue-3: 957 – 964. DOI: 10.1109/7.869515.

XVII. Siri, K., 2000b. “Study of System Instability in Current-Mode Converter Power Systems Operating in Solar Array Voltage Regulation Mode”. In: Fifteenth Annual IEEE Applied Power Electronics Conference and Exposition 2000. New Orleans, LA, USA. 06-10 February 2000. IEEE, pp: 228—234.

XVIII. Wang, Xiaolei, Pan Yan and Liang Yang, 2010a. “An Engineering Design Model of Multi-cell Series-parallel Photovoltaic Array and MPPT control”. In: The 2010 International Conference on Modelling, Identification and Control (ICMIC). Okayama City, Japan. 17-19 July 2010. Okayama University, Japan, pp: 140 – 144.

XIX. Wang, Xiaolei, Liang Yang and Pan Yan, 2010b. “An Engineering Design Model of Multi-cell Series-parallel Solar Array”. In: 2nd International Conference on Future Computer and Communication (ICFCC), 2010. Wuhan, China. 21-24 May 2010. IEEE, pp: 498 – 502.

XX. Yuen-Haw Chang, 2011, “Design and Analysis of Multistage Multiphase Switched-Capacitor Boost DC–AC Inverter”, Circuits and Systems I: Regular Papers, IEEE Transactions on Volume: 58 , Issue: 1 , Page(s): 205 – 218

XXI. Gu, B.; Dominic, J.; Lai, J.-S.; Zhao, Z.; Liu, C., 2013, “High Boost Ratio Hybrid Transformer DC–DC Converter for Photovoltaic Module Applications”, Power Electronics, IEEE Transactions on Volume: 28 , Issue: 4 Page(s): 2048 – 2058

XXII. Yan Ping Jiao; Fang Lin Luo, 2009,” An improved sliding mode controller for boostconverter in solar energy system”, Industrial Electronics and Applications, 2009. ICIEA 2009. 4th IEEE Conference on, Page(s): 805 – 810

XXIII. Yuncong Jiang; Abu Qahouq, J.A., 2011, “Study and evaluation of load current based MPPT control for PV solar systems”, Energy Conversion Congress and Exposition (ECCE), 2011 IEEE, Page(s): 205 – 210

XXIV.Carvalho, C.; Paulino, N., 2010, A MOSFET only, “Step-up DC-DC micro powerconverter, for solar energy harvesting applications”, Mixed Design of Integrated Circuits and Systems (MIXDES), 2010 Proceedings of the 17th International Conference , Page(s): 499 – 504

XXV. Jianwu Zeng; Wei Qiao; Liyan Qu, 2012, “A single-switch isolated DC-DC converter for photovoltaic systems”, Energy Conversion Congress and Exposition (ECCE), 2012 IEEE, Page(s): 3446 – 3452

Author(s) :Adhir Baran Chattopadhyay, Sunil Thomas, Aliakbar Eski and Ruchira Chatterjee View Download