Authors:
Iman Abdalkarim Hasan,Nabil Hassan Hadi,DOI NO:
https://doi.org/10.26782/jmcms.2020.02.00021Keywords:
Wheeled mobile robot,kinematic control,dynamic control,sliding mode control,adaptive control,Abstract
Tracking wheeled mobile robot control is a complicated problem encounter in robotic science. Many issues occurring that are affecting the control of nonlinear robot in actual application. The applications would include uncertainties parameter and internal disturbances. The factors restrict the study of mobile robot tracing control. In this study we modified adaptive sliding mode controller for nonholonomic wheeled mobile robot. The kinematic controller used to produce the desired tracking velocities as input term after that used suggested of the dynamic controller to overcome the uncertainties, disturbance and chattering effect of the sliding controller. according to stability of Lyapunov, the final controlled system is proven to be globally asymptotically stable. Proposed control system is verified and validated using MATLAB\SIMULINK to track the required WMR trajectory. A comparison between PI adaptive sliding mode and PI sliding mode is done. Simulated result portrays that in the presence of continuous disturbances and uncertainties and presented work with very good accuracy and fast error convergence and robustness.Refference:
I. A .Bloch, & Drakunov, S. (1994, December). Stabilization of a nonholonomic system via sliding modes. In Proceedings of 1994 33rd IEEE Conference on Decision and Control (Vol. 3, pp. 2961-2963). IEEE.
II. B S .Park., Yoo, S. J., Park, B J.., & Choi, Y. H. (2008). Adaptive neural sliding mode control of nonholonomic wheeled mobile robots with model uncertainty. IEEE Transactions on Control Systems Technology, 17(1), 207-214.
III. B .d’Andréa-Novel., Campion, G., & Bastin, G. (1995). Control of nonholonomic wheeled mobile robots by state feedback linearization. The International journal of robotics
IV. BeloboMevo, B., Saad, M. R., & Fareh, R. (2018, May). Adaptive Sliding Mode Control of Wheeled Mobile Robot with Nonlinear Model and Uncertainties. In 2018 IEEE Canadian Conference on Electrical & Computer Engineering (CCECE) (pp. 1-5). IEEE.
V. D .Young, K., Utkin, V. I., & Ozguner, U. (1996, December). A control engineer’s guide to sliding mode control. In Proceedings. 1996 IEEE International Workshop on Variable Structure Systems.-VSS’96- (pp. 1-14). IEEE.
VI. Das, T., & Kar, I. N. (2006). Design and implementation of an adaptive fuzzy logic-based controller for wheeled mobile robots. IEEE Transactions on Control Systems Technology, 14(3), 501-510.
VII. D. Chwa,Seo, J. H., Kim, P., & Choi, J. Y. (2002, May). Sliding mode tracking control of nonholonomic wheeled mobile robots. In Proceedings of the 2002 American Control Conference (IEEE Cat. No. CH37301) (Vol. 5, pp. 3991-3996). IEEE.
VIII. F. Hamerlain, K .Achour., T. Floquet., & Perruquetti, W. (2005, December). Higher order sliding mode control of wheeled mobile robots in the presence of sliding effects. In Proceedings of the 44th IEEE Conference on Decision and Control (pp. 1959-1963). IEEE.
IX. G. Klančar, Matko, D., & Blažič, S. (2009). Wheeled mobile robots control in a linear platoon. Journal of Intelligent and Robotic Systems, 54(5), 709-731. research, 14(6), 543-559.
X. Gu, D., & Hu, H. (2002). Neural predictive control for a car-like mobile robot. Robotics and Autonomous Systems, 39(2), 73-86.
XI. H .Mehrjerdi, & M. Saad, (2011). Chattering reduction on the dynamic tracking control of a nonholonomic mobile robot using exponential sliding mode. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 225(7), 875-886.
XII. Ibrahim, A. E. S. B. (2016). Wheeled Mobile Robot Trajectory Tracking using Sliding Mode Control. JCS, 12(1), 48-55.
XIII. Ibari, Benaoumeur, et al. “Backstepping approach for autonomous mobile robot trajectory tracking.” Indonesian Journal of Electrical Engineering and Computer Science 2.3 (2016): 478-485.
XIV. J. Wu,Xu, G., & Yin, Z. (2009). Robust adaptive control for a nonholonomic mobile robot with unknown parameters. Journal of Control Theory and Applications, 7(2), 212-218.
XV. Kanayama, Y., Kimura, Y., Miyazaki, F., & Noguchi, T. (1990, May). A stable tracking control method for an autonomous mobile robot. In Proceedings., IEEE International Conference on Robotics and Automation (pp. 384-389). IEEE.
XVI. Liyong, Y., & Wei, X. (2007, July). An adaptive tracking method for non-holonomic wheeled mobile robots. In 2007 Chinese Control Conference (pp. 801-805). IEEE.
XVII. M .Yang, J., & H. Kim, J. (1999). Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots. IEEE Transactions on robotics and automation, 15(3), 578-587.
XVIII. Normey-Rico, Julio E., et al. “Mobile robot path tracking using a robust PIDcontroller.” Control Engineering Practice 9.11 (2001): 1209-1214.
XIX. R .Rashid., Elamvazuthi, I., Begam, M., & Arrofiq, M. (2010). Fuzzy-based navigation and control of a non-holonomic mobile robot. arXiv preprint arXiv:1003.4081.
XX. R. Dhaouadi., & Hatab, A. A. (2013). Dynamic modelling of differential-drive mobile robots using lagrange and newton-euler methodologies: A unified framework. Advances in Robotics & Automation, 2(2), 1-7.
XXI. R .Fierro., & Lewis, F. L. (1997). Control of a nonholomic mobile robot: Backstepping kinematics into dynamics. Journal of robotic systems, 14(3), 149-163.
XXII. T .Fukao., Nakagawa, H., & Adachi, N. (2000). Adaptive tracking control of a nonholonomic mobile robot. IEEE transactions on Robotics and Automation, 16(5), 609-615.