DCM BOOST CONVERTER WITH HIGH EFFICIENCY

Authors:

A. Hakeem Memon,Sheeraz A. Shaikh,Zubair A. Memon,Anwar A. Memon,Ali A. Memon,

DOI NO:

https://doi.org/10.26782/jmcms.spl.6/2020.01.00006

Keywords:

Boost converter,discontinuous conduction mode (DCM),power factor correction (PFC),variable duty-cycle control (VDCC),constant duty-cycle control (CDCC),electromagnetic interference (EMI),duty-cycle,

Abstract

The discontinuous conduction mode (DCM)boost converter is widely used topology because of numerous advantages like no reverse recovery loss in freewheeling diode, no loss during turning on of the switch, small size of output capacitor, high power factor (PF) for universal input voltage range, and easy design of electromagnetic interference (EMI) filter because of constant switching frequency operation. However, its efficiency is low when operated in constant duty-cycle control (CDCC) scheme. For enhancing the efficiency of the DCM boost converter, a variableduty-cycle control (VDCC) method has been introduced. Fitting duty-cycle method is also discussed to make circuit implementation easier. Comparative analysis is given in terms of loss analysis for both types of control schemes and for verifying the validity of proposed technique, the simulation results are carried out.

Refference:

I. Compatibility, E. (2014). Part 3-2: Limits–Limits for harmonic current
emissions (equipment input current≤ 16 A per phase). International
Standard IEC, 61000-3-2.
II. Gandhi, B., &Ezhilmaran, M. (2013, April).Achieving high input
power factor for DCM boost PFC converters by controlling variable
duty cycle.In 2013 International Conference on Computation of Power,
Energy, Information and Communication (ICCPEIC) (pp. 18-20).IEEE.
III. García, O., Cobos, J. A., Prieto, R., Alou, P., &Uceda, J. (2003). Single
phase power factor correction: A survey. IEEE Transactions on Power
Electronics, 18(3), 749-755.
IV. Granza, M. H., Font, C. H. I., & Gules, R. (2015, August). Single-phase
non-isolated high power factor rectifier based on an interleaved DCM
boost converter in a three-level configuration. In 2015 IEEE 13th
Brazilian Power Electronics Conference and 1st Southern Power
Electronics Conference (COBEP/SPEC) (pp. 1-6). IEEE.
V. Ham, S. H., Choe, H. J., Lee, H. S., & Kang, B. (2017).Improvement of
Power-Conversion Efficiency of AC–DC Boost Converter Using 1: 1
Transformer.IEEE Transactions on Power Electronics, 33(8), 6646-
6655.

VI. Han, J. K., Baek, J. I., Jeong, Y., Yeon, C. O., & Moon, G. W. (2017,
June). A simple THD improving method for CCM boost PFC converter
under mixed conduction mode operation. In 2017 IEEE 3rd
International Future Energy Electronics Conference and ECCE Asia
(IFEEC 2017-ECCE Asia) (pp. 466-470). IEEE.
VI. Langella, R., Testa, A., &Alii, E. (2014). IEEE recommended practice
and requirements for harmonic control in electric power systems.
VIII. Kim, J., Choi, H., & Won, C. Y. (2017). New modulated carrier
controlled PFC boost converter. IEEE Transactions on Power
Electronics, 33(6), 4772-4782.
IX. Lazar, J., & Cuk, S. (1995, October). Open loop control of a unity
power factor, discontinuous conduction mode boost rectifier.In
Proceedings of INTELEC 95. 17th International Telecommunications
Energy Conference (pp. 671-677). IEEE.
X. Lazar, J., & Cuk, S. (1996, March). Feedback loop analysis for AC/DC
rectifiers operating in discontinuous conduction mode. In Proceedings
of Applied Power Electronics Conference.APEC’96 (Vol. 2, pp. 797-
806).IEEE.
XI. Memon, A. H., Yao, K., Chen, Q., Guo, J., & Hu, W. (2017).Variableon-
time control to achieve high input power factor for a CRMintegrated
buck–flyback PFC converter.IEEE Transactions on Power
Electronics, 32(7), 5312-5322.
XII. Memon, A. H., & Yao, K. (2018).UPC strategy and implementation for
buck–buck/boost PF correction converter. IET Power Electronics, 11(5),
884-894.
XIII. Memon, A. H., Baloach, M. H., Sahito, A. A., Soomro, A. M., &
Memon, Z. A. (2018). Achieving High Input PF for CRM Buck-
Buck/Boost PFC Converter. IEEE Access, 6, 79082-79093.
XIV. Memon, A. H., Pathan, A. A., Kumar, M., Sahito, A. A J., & Memon, Z.
A (2019).Integrated buck-flyback converter with simple structure and
unity power factor.Indian Journal of Science and Technology, 12(17),
1-5
XV. Memon, A. H., Memon, Z. A., Shaikh, N. N., Sahito, A.A &Hashmani,
A.A (2019). Boundary conduction mode modified buck converter with
low input current total harmonic distortion. Indian Journal of Science
and Technology, 12(17), 1-5

XVI. Memon, A. H., Memon, Z. A., Shaikh, N. N., Sahito, A.A &Hashmani,
A.A (2019).buck-buck/boost converter with high input power factor and
non-floating output voltage. International Journal of Computer Science
and Network Security, 19(4), 1-5
XVII. Meng, T., Yu, S., Ben, H., Wei, G., & Sun, S. (2014, May). Three-phase
isolated full-bridge boost PFC with flyback passive auxiliary converter.
In 2014 International Power Electronics Conference (IPEC-Hiroshima
2014-ECCE ASIA) (pp. 2318-2322). IEEE.
XVIII. Rodriguez, L. A. G., Jones, V., Oliva, A. R., Escobar-Mejía, A., &Balda,
J. C. (2017). A new SST topology comprising boost three-level AC/DC
converters for applications in electric power distribution systems. IEEE
Journal of Emerging and Selected Topics in Power Electronics, 5(2),
735-746.
XIX. Sahoo, S. K., &Jariwala, H. R. (2012, May).A new power factor
correction technique using PFC boost converter.In 2012 11th
International Conference on Environment and Electrical Engineering
(pp. 819-823).IEEE.
XX. Singh, B., Singh, S., Chandra, A., & Al-Haddad, K. (2011).
Comprehensive study of single-phase AC-DC power factor corrected
converters with high-frequency isolation. IEEE transactions on
Industrial Informatics, 7(4), 540-556.
XXI. Taniguchi, K., &Nakaya, Y. (1997, August). Analysis and improvement
of input current waveforms for discontinuous-mode boost converter
with unity power factor. In Proceedings of Power Conversion
Conference-PCC’97 (Vol. 1, pp. 399-404).IEEE.
XXII. Wang, L., Wu, Q. H., Tang, W. H., Yu, Z. Y., & Ma, W. (2017,
October).CCM-DCM average current control for both continuous and
discontinuous conduction modes boost PFC converters. In 2017 IEEE
Electrical Power and Energy Conference (EPEC) (pp. 1-6). IEEE.
XIII. Wu, W., Wang, H., Liu, Y., Huang, M., &Blaabjerg, F. (2016).A dualbuck–
boost ac/dc converter for dc nanogrid with three terminal outputs.
IEEE Transactions on Industrial Electronics, 64(1), 295-299.
XXIV. Yao, K., Ruan, X., Mao, X., & Ye, Z. (2010).Variable-duty-cycle control
to achieve high input power factor for DCM boost PFC converter. IEEE
Transactions on Industrial Electronics, 58(5), 1856-1865.

View | Download