Authors:
Musse Mohamud Ahmed,Aohammad Kamrul Hasan,Jong F. Chen,Denis Lee,DOI NO:
https://doi.org/10.26782/jmcms.spl.6/2020.01.00001Keywords:
GA,Optimization,Ground Flash Density (GFD),Lightening,Abstract
When lightning strikes to the transmission line, orifices in the insulation can be created. As a result, the insulation co-ordination between phases is breakdown and overvoltage will propagate across the transmission line in the form of electrical fields. Hence, the system will encounter under-frequency and prolonged type of destruction. In a worst-case situation, it may lead blackout. One of the effective ways to reduce lightning impact is to identify the lightning activity. This researchhas been carried out to familiarize the lightning activity in Sarawakarea;hence, the Genetic Algorithm (GA) is utilized to optimize the crucial constants of the lightning empirical equation. As the constant values are successful to be optimized, estimation of Ground Flash Density (GFD) can be performed. The performance is evaluated using Matlab. Using the GA optimized parameter the estimations areprecise. To achieve estimation that is more accurate many trials are required to be carried out in order to determine the best fitness value. In this article, three casesare carried out in determining the optimal solution in term of constant “a” and “b” for each sub-region in Sarawak.Refference:
I. Houck, C. R., Joines, J., & Kay, M. G. (1995). A genetic algorithm for function optimization: a Matlab implementation. Ncsu-ie tr, 95(09), 1-10.
II. Rakov, V. A., &Uman, M. A. (2003). Lightning: physics and effects. Cambridge University Press.
III. Leung, F. H. F., Lam, H. K., Ling, S. H., & Tam, P. K. S. (2003). Tuning of the structure and parameters of a neural network using an improved genetic algorithm. IEEE Transactions on Neural networks, 14(1), 79-88.
IV. Stolzenburg, M., Marshall, T. C., Karunarathne, S., Karunarathna, N., & Orville, R. E. (2014). Leader observations during the initial breakdown stage of a lightning flash. Journal of Geophysical Research: Atmospheres, 119(21).
V. Sidik, M. A. B., Shahroom, H. B., Salam, Z., Buntat, Z., Nawawi, Z., Ahmad, H., &Arief, Y. Z. (2015). Lightning monitoring system for sustainable energy supply: A review. Renewable and Sustainable Energy
Reviews, 48, 710-725.
VI. Coquillat, S., Boussaton, M. P., Buguet, M., Lambert, D., Ribaud, J. F., &Berthelot, A. (2013). Lightning ground flash patterns over Paris area between 1992 and 2003: Influence of pollution?. Atmospheric research, 122, 77-92.
VII. Dwyer, J. R., &Uman, M. A. (2014). The physics of lightning. Physics Reports, 534(4), 147-241.
VIII. Sovacool, B. K., &Bulan, L. C. (2012). Energy security and hydropower development in Malaysia: The drivers and challenges facing the Sarawak Corridor of Renewable Energy (SCORE). Renewable Energy, 40(1), 113- 129.
IX. Kundur, P., Balu, N. J., &Lauby, M. G. (1994). Power system stability and control (Vol. 7). New York: McGraw-hill.
X. Brand, K. P. (2003). Substation Automation Handbook Utility Automation Consulting Lohmann. Bremgarten, Switzerland.
XI. Maaji, S. S., Khan, D. F. S., Tabassum, M., Haldar, M. K., & Karunakaran P. (2013). Preliminary Studies of a Proposed Borneo-Wide Smart Grid. In World Hybrid Technologies and Energy Conference in Sarawak, Malaysia.
XII. Sugimoto, S., et al. “Principle and characteristics of a fault current limiter with series compensation.” IEEE Transactions on Power delivery 11.2 (1996): 842-847.
XIII. Rizk, F. A. (2010). Modeling of substation shielding against direct lightning strikes. IEEE Transactions on Electromagnetic Compatibility, 52(3), 664- 675.
XIV. De Castro Assis, S., do Couto Boaventura, W., &Paulino, J. O. S. (2017). Lightning Performance of Transmission Line: Comparison IEEE Flash and Monte Carlo Method. IEEE. Latin America Transactions, 15(2), 269-274.
XV. He, J., Wang, X., Yu, Z., & Zeng, R. (2015). Statistical analysis on lightning performance of transmission lines in several regions of china. IEEE Transactions on Power Delivery, 30(3), 1543-1551.