MECHANICAL STRENGTH AND STIFFNESS BEHAVIOUR OF CLASS F-POND ASH

Authors:

M. Sudhakar,Heeralal Mudavath,G. Kalyan Kumar,

DOI NO:

https://doi.org/10.26782/jmcms.2019.12.00019

Keywords:

Pond ash,Lime,UCS,CBR,Resilient Modulus,

Abstract

The pond ash (class F) as an individual material is unsuitable for utilization in pavement constructions due to few undesirable physico-mechanical properties. Treatment of pond ash by suitable additives like cement and lime would improve its usability. The present study is intended to determine the strength and stiffness properties such as Unconfined Compressive Strength (UCS), California Bearing Ratio (CBR) and Resilient modulus (MR) of both untreated and lime-treated pond ash for its pavement subbase application. The experimental investigation illustrates the enhancement in UCS, CBR, and MR properties of lime-treated pond ash compared to untreated/virgin pond ash specimens. Further, a significant improvement was observed at lime content about 8%, which can be considered as optimum addition to pond ash for pavement constructions.

Refference:

I. American Association of State Highway and Transportation Officials
AASHTO, 1993. AASHTO guide for design of pavement structures,
AASHTO, Washington, D.C.
https://habib00ugm.files.wordpress.com/2010/05/aashto1993.pdf
II. Arora, S., & Aydilek, A. H. (2005). Class F fly-ash-amended soils as
highway base materials. Journal of Materials in Civil Engineering, 17(6),
640-649. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:6(640)
III. CEA “Fly ash generation at coal/lignite based thermal power stations and
its utilization in the country for the year 2016-2017”, New Delhi: Central
Electricity Authority, 2017 http://www.cea.nic.in/tcd.html
IV. Chand, S. K., & Subbarao, C. (2007). Strength and slake durability of lime
treated pond ash. Journal of materials in civil engineering, 19(7), 601-
608. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:7(601)
V. Consoli, N. C., Prietto, P. D. M., Carraro, J. A. H., & Heineck, K. S.
(2001). Behavior of compacted soil-fly ash-carbide lime mixtures. Journal
of Geotechnical and Geoenvironmental Engineering, 127(9), 774-782.
VI. Dev, K. L., & Robinson, R. G. (2015). Pond ash based controlled low
strength flowable fills for geotechnical engineering
applications. International Journal of Geosynthetics and Ground
Engineering, 1(4), 32.https://doi.org/10.1007/s40891-015-0035-1
VII. Ghosh, A. (2009). Compaction characteristics and bearing ratio of pond
ash treated with lime and phosphogypsum. Journal of materials in civil
engineering, 22(4), 343-351. https://doi.org/10.1061/(ASCE)MT.1943-
5533.0000028
VIII. Ghosh, A., & Subbarao, C. (2007). Strength characteristics of class F fly
ash modified with lime and gypsum. Journal of geotechnical and
geoenvironmental engineering, 133(7), 757-766.
https://doi.org/10.1061/(ASCE)1090-0241(2007)133:7(757)
IX. Gupta, D., & Kumar, A. (2017). Performance evaluation of cement-treated
pond ash-rice husk ash-clay mixture as a highway construction
material. Journal of Rock Mechanics and Geotechnical Engineering, 9(1),
159-169. https://doi.org/10.1016/j.jrmge.2016.05.010
https://doi.org/10.1061/(ASCE)1090-0241(2001)127:9(774)
X. J. Groeger, G. Rada, and A. Lopez, “AASHTO T307 — Background and
Discussion,” in Resilient Modulus Testing for Pavement Components, ed.
G. Durham, W. DeGroff, and W. Marr (West Conshohocken, PA: ASTM
International, 2003), 16 29. https://doi.org/10.1520/STP12519S
XI. Kang, X., Ge, L., Kang, G. C., & Mathews, C. (2015). Laboratory
investigation of the strength, stiffness, and thermal conductivity of fly ash
and lime kiln dust stabilised clay subgrade materials. Road Materials and
Pavement Design, 16(4), 928-945.
https://doi.org/10.1080/14680629.2015.1028970

XII. Kumar Bera, A., Ghosh, A., & Ghosh, A. (2007). Compaction
characteristics of pond ash. Journal of materials in civil
engineering, 19(4), 349-357. https://doi.org/10.1061/(ASCE)0899-
1561(2007)19:4(349)
XIII. Lav, A. H., Lav, M. A., & Goktepe, A. B. (2006). Analysis and design of a
treated fly ash as pavement base material. Fuel, 85(16), 2359-2370.
https://doi.org/10.1016/j.fuel.2006.05.017
XIV. National Cooperative Highway Research Program (NCHRP). (2004).
Guide for mechanistic-empirical design of new and rehabilitated pavement
structures. National Cooperative Highway Research Program 1-37 A.
http://onlinepubs.trb.org/onlinepubs/archive/mepdg/2appendices_RR.pdf
XV. Nicholson, P., and Kashyap, V. (1993). “Fly ash stabilization of tropical
Hawaiian soils.” Geotechnical Special Publication, No. 36, ASCE, New
York, 15–29. http://worldcat.org/isbn/0872629864
XVI. Pani, A., & Singh, S. P. (2017). Influences of curing conditions on
strength and microstructure of lime-amended fly ash.
http://hdl.handle.net/2080/2749
XVII. Patel, S., & Shahu, J. T. (2016). Resilient response and permanent strain
of steel slag-fly ash-dolime mix. Journal of Materials in Civil
Engineering, 28(10), 04016106. https://doi.org/10.1061/(ASCE)MT.1943-
5533.0001619
XVIII. Patel, S., & Shahu, J. T. (2018). Comparison of Industrial Waste Mixtures
for Use in Subbase Course of Flexible Pavements. Journal of Materials in
Civil Engineering, 30(7), 04018124.
https://doi.org/10.1061/(ASCE)MT.1943-5533.0002320
XIX. Puppala, A. J., Ramakrishna, A. M., & Hoyos, L. R. (2003). Resilient
moduli of treated clays from repeated load triaxial test. Transportation
research record, 1821(1), 68-74. https://doi.org/10.3141/1821-08
XX. Rout, R. K., Ruttanapormakul, P., Valluru, S., & Puppala, A. J. (2012).
Resilient moduli behavior of lime-cement treated subgrade soils. In Geo
Congress, ASCE (pp. 1428-1437). https://doi.org/10.1061/9780784412121
XXI. Saghafi, B., Nageim, H. A., VisuliosMPhil, P., & Ghazireh, N. (2012).
Use of waste limestone dust and steel slag in UK highways type 1
unbound mixtures. Proceedings of the Institution of Civil Engineers-
Construction Materials, 166(2), 99-107.
https://doi.org/10.1680/coma.11.00029
XXII. Samanta, M. (2018). Investigation on geomechanical behaviour and
microstructure of cement-treated fly ash. International Journal of
Geotechnical Engineering, 12(5), 449-
461.https://doi.org/10.1080/19386362.2017.1295623
XXIII. Sarkar, R., & Dawson, A. R. (2017). Economic assessment of use of pond
ash in pavements. International Journal of Pavement Engineering, 18(7),
578-594. https://doi.org/10.1080/10298436.2015.1095915

XXIV. Singh, S. P., & Ramaswamy, S. V. (2006). Utilisation Potential of Cement
Stabilised Flyash-GBFS Mixes in Highway Construction. Water and
Energy Abstracts, 16(1).
http://www.indianjournals.com/ijor.aspx?target=ijor:wea&volume=16&is
sue=1&article=143
XXV. Sivapullaiah, P. V., Prashanth, J. P., & Sridharan, A. (2000). Optimum
lime content for fly ashes and the role of the curing period. Journal of
testing and evaluation, 28(6), 499-506. https://doi.org/10.1520/JTE12141J
XXVI. Sivapullaiah, P., & Moghal, A. (2011). CBR and strength behavior of
class F fly ashes treated with lime and gypsum. International Journal of
Geotechnical Engineering, 5(2), 121-130.
https://doi.org/10.3328/IJGE.2011.05.02.121-130
XXVII. Suthar, M., & Aggarwal, P. (2018). Bearing ratio and leachate analysis of
pond ash treated with lime and lime sludge. Journal of Rock Mechanics
and Geotechnical Engineering, 10(4), 769-
777.https://doi.org/10.1016/j.jrmge.2017.12.008
XXVIII. Titli, H., Coenen, A., & Elias, M. (2012). Resilient Characteristics of
Bottom Ash and Bottom Ash-Soil Mixtures. In Testing and Specification
of Recycled Materials for Sustainable Geotechnical Construction. ASTM
International.https://doi.org/10.1520/JAI103700
XXIX. Viswanathan, R., Saylak, D., Estakhri, C. K., Tauferner, D &
Chimakurthy, H. (1996). Evaluation of the Use of Coal Combustion By-
Products in Highway and Airfield Pavement Construction (No. TX-
97/2969-1F). https://trid.trb.org/view/572404
XXX. Wong, C., & Ho, M. K. (1989). Experimental Fly Ash Base. Farm-To-
Market Road 1093, Fulshear, TEXAS (No. DHT-
17).https://trid.trb.org/view/317525

View Download