Authors:
E.M. Ovsiyuk,O.V. Veko,Y.A. Voynova,V.M. Red’kov,V.V. Kisel,N.V. Samsonenko,DOI NO:
https://doi.org/10.26782/jmcms.2019.03.00065Keywords:
spin 1/2 particle,two mass parameters, external magnetic field,Abstract
Equation for spin 1/2 particle with two mass states is investigated in presence of magnetic field. The problem reduces to a system of 4 linked 2-nd order differential equations. After diagonalization of the mixing term, separate equations for four different functions are derived, in which the spectral parameters coincide with the roots of a 4-th order polynomial. Solutions are constructed in terms of confluent hyper-geometric functions; four series of energy spectrum are found. Numerical study of the spectra is performed. Physical energy levels for the two mass fermion differ from those for the ordinary Dirac fermion.Refference:
I.Bhabha H.J. (1952). An equation for a particle with two mass states and positive charge density. Philosophical Magazine Series 7, 43(336): 33–47. Available online: http://www.tandfonline.com/doi/abs/10.1080/14786440108520964
II.Capri A.Z.(1969). First order wave equations for multi-mass fermions. Il NuovoCimentoB, 64(1): 151–158. Available online: https://link.springer.com/article/10.1007/BF02710288
III.Fedorov F.I. (1952). Generalized relativistic wave equations. Reports of the Academy of Sciences of the USSR (Доклады Академии наук СССР), 82(1): 37–40 (in Russian). Available online: https://elibrary.ru/contents.asp?titleid=7781
IV.Gel’fand I.M., and Yaglom A.M. (1948). General relativistic invariant equations and infinitely dimensional representation of the Lorentz group. Journal of Experimental and Theoretical Physics (Журнал экспериментальной и теоретической физики), 18(8): 703–733 (in Russian). Available online: https://elibrary.ru/contents.asp?titleid=8682
V.Gel’fand I.M., and Yaglom A.M. (1948). Pauli theorem for general relativistic invariant waveequations. Journal of Experimental and Theoretical Physics (Журнал экспериментальной и теоретической физики), 18(12): 1096–1104 (in Russian). Available online: https://elibrary.ru/contents.asp?titleid=8682
VI.Gel’fand I.M., and Yaglom A.M. (1948). Charge conjugation for general relativistic invariant wave equations. Journal of Experimental and Theoretical Physics (Журнал экспериментальной и теоретической физики), 18(12): 1105–1111 (in Russian). Available online: https://elibrary.ru/contents.asp?titleid=8682
VII.Kisel V.V., Pletyukhov V.A., Gilewsky V.V., OvsiyukE.M., Veko O.V., and Red’kov V.M. (2017). Spin 1/2 particle with two mass states. interaction with external fields. Nonlinear Phenomena in Complex Systems, 20(4): 404–423. Available online: http://www.j-npcs.org/abstracts/vol2017/v20no4/v20no4p404.html
VIII.Kisel V.V.,OvsiyukE.M., Veko O.V., VoynovaYa.A.,Balan V., Red’kovV.M. (2018). Elementary Particles with Internal Structure in External Fields. Vol I. General Theory. Nova Science Publishers, New York, USA. Available online: https://www.novapublishers.com/catalog/product_info.php?products_id=63898
IX.Kisel V.V., Ovsiyuk E.M., Veko O.V., Voynova Ya.A., Balan V., Red’kovV.M. (2018). Elementary Particles with Internal Structure in External Fields. Vol II. Physical Problems.Nova Science Publishers, New York, USA.Available online: https://www.novapublishers.com/catalog/product_info.php?products_id=63900
X.Pletjukhov V.A., Red’kov V.M., and Strazhev V.I. (2015). Relativistic wave equations and intrinsic degrees of freedom (Релятивистские волновые уравнения и внутренние степени свободы). Publishing House “Belarusian Science”, Minsk, Belarus (in Russian).Available online: http://www.belnauka.by/component/mtree/knizhnye/978-985-08-1886-7.html?Itemid=
XI.Red’kov V.M. (2009). Fields in Riemannian space and the Lorentz group (Поля частиц в римановом пространстве и группа Лоренца). Publishing House “Belarusian Science”, Minsk, Belarus (in Russian).Available online: http://www.belnauka.by/component/mtree/realizovannye/polya-chastits-v-rimanovom-prostranstve-i-gruppa-lorentsa.html?Itemid=
XII.Shimazu H. (1956). A relativistic wave equation for a particle with two mass states of spin 1 and 0. Progressof Theoretical Physics, 16(4): 287–298.Available online: https://academic.oup.com/ptp/article/16/4/287/1847199
View | Download