Static Two-Beam Surface Plasmon Interferometer of the Terahertz Range

Authors:

A.K. Nikitin,I.Sh. Khasanov,O.V. Khitrov,T.A. Rijova,

DOI NO:

https://doi.org/10.26782/jmcms.2019.03.00064

Keywords:

surface plasmon polaritons,terahertz radiation,static interferometers,plasmon sensors, thin film spectroscopy,

Abstract

A new scheme of static surface plasmon-polaritons (SPPs) interferometer of the terahertz (THz) range is described. The interference pattern is formed due to interaction of two converging SPP beams that have run different distances. The original SPP beam is splitted and reflected by a flat beam splitter and a mirror disposed of the waveguiding surface and normally to it. By varying the distance spacing the splitter and the coupling element one can change the pattern period. Execution of the pattern enables one to determine both the real and imaginary part of the SPPs refractive index, which is uniquely related to the dielectric constant of the surface and the optical characteristics of its transition layer. The operating time of the interferometer is determined by the photodetector time constant, which is extremely important for studying fast processes on a conducting surface. The interferometer can work with broadband THz radiation sources (such as synchrotrons or pulsed lasers) as well.

Refference:

I.Agranovich V.M., and Mills D.L. (1982). Surface polaritons. Surface electro-magnetic waves at surfaces and interfaces. Amsterdam, N.-Y., Oxford.

II.Bogomolov G.D., Zhizhin G.N., Kiryanov A.P., Nikitin A.K., and Khitrov O.V. (2009). Determination of the refractive index of IR surface plasmons by static asymmetric interferometry. Bull. Russian Academy of Sciences. Physics, 73(4): 533-536.

III.Bogomolov G.D., Zhizhin G.N., Nikitin А.К., and Knyazev B.A. (2009). Geodesic elements to control terahertz surface plasmons. Nuclear Instrum. and Methods in Phys. Research (A), 603(1/2): 52-55.

IV.Dem’yanenko M.A., Esaev D.G., Marchishin I.V., Ovsyuk V.N., Fomin B.I., Knyazev B.A., and Gerasimov V.V. (2011). Application of uncooled microbolometer detector arrays for recording radiation of the terahertz spectral range. Optoelectronics, Instrumentationand Data Processing, 47(5):109–113.

V.Gan Q.Q., Gao Y., and Bartoli F.J. (2009). Vertical plasmonic Mach–Zehnder interferometer for optical sensing. Optics Express, 17(23):20747–20755.

VI.GerasimovV.V., KnyazevB.A., and Nikitin A.K. (2017). Reflection of terahertz monochromatic surface plasmon-polaritons by a flat mirror. Quantum Electronics, 47(1): 65–70.

VII.GerasimovV.V., Knyazev B.A., Lemzyakov A.G., and Nikitin A.K. (2016). Reflection of terahertz surface plasmons from plane mirrors and transparent

plates. Proc. of the 41-st Intern. Conf. on Infrared, Millim., and Terahertz Waves, IRMMW-THz. Paper H3D.2. Copenhagen, pp. 7758410-7758411. See also http://www.irmmw-thz2016.org/

VIII.GerasimovV.V., Knyazev B.A., Lemzyakov A.G., Nikitin A.K., and Zhizhin G.N. (2016). Growth of terahertz surface plasmon propagation length due to thin-layer dielectric coating. JOSA (B), 33(11): 2196-2203.

IX.KabashinA.V., Nikitin P.I. (1997).Interferometer based on a surface-plasmon resonance for sensor applications. Quant. Electronics, 27(7): 653–654.

X.MaierS.A. (2007). Plasmonics: Fundamentals & Applications. Springer Science+Business Media.

XI.Melentiev P.N., Kuzin A.A., Gritchenko A.S., Kalmykov A.S., Balykin V.I.(2017). Femtosecond plasmon interferometer. Optics Comm., 382: 509-513.

XII.MingY., WuZ.-J., WuH.; XuF.,LuY. (2012). Surface plasmon interferometer and its sensing applications. IEEE Photonics Journal, 4(1): 291-299.

XIII.NazarovM., Garet F., Armand D., Shkurinov A., and Coutaz J.-L. (2008). Surface plasmon THz waves on gratings. Comptes Rendus Physique, 9(2): 232-247.

XIV.NelsonS.G., JohnstonK.S., and YeeS.S. (1996). High sensitivity surface plasmon resonace sensor based on phase detection. Sensors and Actuators (B), 35–36:187–191.

XV.NikitinA.K. (2002). Plasmon optometry. Dr. Sci. Dissertation, Scientific & Technological Center for Unique Instrumentation of RAS, Moscow.

XVI.NikitinA.K., Tishchenko A.A. (1991). Phase SEW-microscopy. Techn. Phys. Lett., 17(11): 76-79.

XVII.StegemanG.I., Wallis R.F., and Maradudin A.A. (1983). Excitation of surface polaritons by end-fire coupling. Optics Letters, 8 (7): 386-388.

XVIII.TemnovV.V., Woggon U., Dintinger J., Devaux E., and EbbesenT.W. (2007). Surface plasmon interferometry: measuring group velocity of surface plasmons. Optics Lett., 32(10): 1235-1237.

XIX.ZhizhinG.N., Kiryanov A.P., Nikitin A.K., and Khitrov O.V. (2012). Dispersive Fourier-transform spectroscopy of surface plasmons in the infrared frequency range.Optics and Spectroscopy, 112(4): 545–550.

View | Download