Influence of Dual Layer Silica Nanoparticles Coating on the Performance Enhancement of Solar PV Modules

Authors:

Saim Saher,Kamran Alam,Abid Ullah,Affaq Qamar,Javed Iqbal,

DOI NO:

https://doi.org/10.26782/jmcms.2019.02.00025

Keywords:

Nanoparticles, Antireflectivity,erosol deposition,Solar PV,SEM,AFM,

Abstract

The Porous silica nanoparticles deposited on the glass as well as bare silicon wafer substrate to obtain super hydrophilicity and antireflectivity. The coating is performed by using aerosol impact deposition system using silane, air and helium as precursor gases. The desired coating thickness over the substrate surface is achieved by tuning the RF power, pressures ratio of reaction to deposition chamber and maneuvering of silane flow rate, helium and air mixture. Scanning electron microscopy reveals the particle size of 12.6 nm, whereas, atomic force microscopy (AFM) is deployed to study the coated film surface topology. This indicates outstanding antifogging and super-hydrophilic properties due to surface roughness and nano-porosity. Moreover, the coated surface graded index increases the transmissivity from 90% to 99.2%. Such enhancements are much favorable for the solar PV applications.

Refference:

I.Cebeci, F.Ç., Wu, Z., Zhai, L., Cohen, R.E. and Rubner, M.F., 2006. Nanoporosity-driven superhydrophilicity: a means to create multifunctional antifogging coatings. Langmuir, 22(6), pp.2856-2862.

II.Chen, D., 2001. Anti-reflection (AR) coatings made by sol–gel processes: a review. Solar Energy Materials and Solar Cells, 68(3-4), pp.313-336.

III.Deubener, J., Helsch, G., Moiseev, A. and Bornhöft, H., 2009. Glasses for solar energy conversion systems. Journal of the European Ceramic Society, 29(7), pp.1203-1210.

IV.Eshaghi, A., Aghaei, A.A., Zabolian, H., Jannesari, M.O.H.A.M.M.A.D. and Firoozifar, A.L.I.R.E.Z.A., 2013. Transparent superhydrophilic SiO2/TiO2/SiO2 tri-layer nanostructured antifogging thin film. Ceram–Silikaty, 57, pp.210-214.

V.Faustini, M, Nicole, L., Boissi ere, C., Innocenzi, P., Sanchez, C., Grosso, D., 2010. Hydrophobic, antireflective, self-Cleaning, and antifogging sol–gel coatings: an example of multifunctional nano structured materials for photovoltaic cells, Chemistry of Materials 22 (2010) 4406–4413.

VI.Granqvist, C.G., 2007. Transparent conductors as solar energy materials: A panoramic review. Solar energy materials and solar cells, 91(17), pp.1529-1598

VII.Guillemot, F., Brunet-Bruneau, A., Bourgeat-Lami, E., Gacoin, T., Barthel, E. andBoilot, J.P., 2010. Latex-templated silica films: tailoring porosity to get a stable low-refractive index. Chemistry of Materials, 22(9), pp.2822-2828.

VIII.Hassan, A. H., Rahoma, U. A., Elminir, H. K., and Fathy, A. M., 2005, “Effect of airborne dust concentration on the performance of PV modules,” J AstronSoc Egypt, 13, pp. 24-38.

IX.Karasiński, P., Jaglarz, J., Reben, M., Skoczek, E. and Mazur, J., 2011. Porous silica xerogel films as antireflective coatings–Fabrication and characterization. Optical Materials, 13(12), pp.1989-1994.

X.Lee, S., Cho, L. S., Lee, J. H., Kim, D. H., Kim, D. W., Kim, J. Y., Shin, H, Lee, J. k., Jung, H. S., Park, N. G., Kim, K.,, M.J.Ko, K.S.Hong, 2010. Two-step sol–gel method-based TiO2 nanoparticles with uniform morphology and size for efficient photo-energy conversiondevices. Chemistry of Materials, 22, pp.1958–1965.

XI.Li, D., Liu, Z., Wang, Y., Shan, Y. and Huang, F., 2015. Efficiency Enhancement of Cu (In, Ga) Se 2 Solar Cells by Applying SiO 2–PEG/PVP Antireflection Coatings. Journal of Materials Science & Technology, 31(2), pp.229-234.

XII.Li, X. and He, J., 2016. Synthesis of raspberry-like SiO2–TiO2 nanoparticles toward antireflective and self-cleaning coatings. ACS applied materials & interfaces, 5(11), pp.5282-5290.

XIII.Li, Y., Zhang, J., Zhu, S., Dong, H., Jia, F., Wang, Z., Sun, Z., Zhang, L., Li, Y., Li, H. and Xu, W., 2009. Biomimetic surfaces for high‐performance optics. Advanced Materials, 21(46), pp.4731-4734.Yang, Adv. Mater. 21 (2009) 4731.

XIV.Prado, R., Beobide, G., Marcaide, A., Goikoetxea, J. and Aranzabe, A., 2016. Development of multifunctional sol–gel coatings: Anti-reflection coatings with enhanced self-cleaning capacity. Solar Energy Materials and Solar Cells, 94(6), pp.1081-1088.

XV.Prosser, J. H., Brugarolas, T., Lee, S., Nolte, A. J., Lee, D., 2012. Avoiding Cracks in Nanoparticle Films. Nano Lett., 12, pp.5287− 5291.

XVI.Raut, H.K., Ganesh, V.A., Nair, A.S. and Ramakrishna, S., 2011. Anti-reflective coatings: A critical, in-depth review. Energy & Environmental Science, 4(10), pp.3779-3804.

XVII.Singh, K. B., Tirumkudulu, M. S., Cracking in Drying Colloidal Films, 2007. Phys. Rev. Lett., 98, pp.218302.

XVIII.Tanesab, J., Parlevliet, D., Whale, J., Urmee, T. and Pryor, T., 2015. The contribution of dust to performance degradation of PV modulesin a temperate climate zone. Solar Energy, 120, pp.147-157.

XIX.Verma, L.K., Sakhuja, M., Son, J., Danner, A.J., Yang, H., Zeng, H.C. and Bhatia, C.S., 2011. Self-cleaning and antireflective packaging glass for solar modules. Renewable Energy, 36(9), pp.2489-2493.

XX.Xu, G., Jin, P., Tazawa, M. and Yoshimura, K., 2004. Optimization of antireflection coating for VO2-based energy efficient window. Solar Energy Materials andSolar Cells, 83(1), pp.29-37.

XXI.Zhang, X.P., Lan, P.J., Lu, Y.H., Li, J., Xu, H., Zhang, J., Lee, Y., Rhee, J. Y., Choy, K. L., Song, W. J., 2014. Multifunctional antireflection coatings based on novel hollow silica-silica nanocomposites, ACS Appl. Mater. Interfaces, 6, pp.1415–1423.

XXII.Zhang, X.X., Xia, B.B., Ye, H.P., Zhang, Y.L., Xiao, B., Yan, L.H., Lv, H.B. and Jiang, B., 2012. One-step sol–gel preparation of PDMS–silica ORMOSILs as environment-resistant and crack-free thick antireflective coatings. Journal of Materials Chemistry, 22(26), pp.13132-13140.

XXIII.Zhang, L., Qiao, Z.A., Zheng, M., Huo, Q. and Sun, J., 2010. Rapid and substrate-independent layer-by-layer fabrication of antireflection-and antifogging-integrated coatings. Journal of Materials Chemistry, 20(29), pp.6125-6130.

XXIV.Zhang, X., Fujishima, A., Jin, M., Emeline, A.V. and Murakami, T., 2006. Double-layered TiO2− SiO2 nanostructured films with self-cleaning and antireflective properties. The Journal of Physical Chemistry B, 110(50), pp.25142-25148.

Saim Saher, Kamran Alam, Affaq Qamar, Abid Ullah, Javed Iqbal View Download