Authors:
Basma Mohamed,Iqbal M. Batiha,Mohammad Odeh,Mohammed El-Meligy,DOI NO:
https://doi.org/10.26782/jmcms.2024.12.00015Keywords:
Dominant Metric Dimension,Domination Number,Independent Number,Metric Dimension,Resolving Dominating Set,Abstract
We consider, in this paper, the NP-hard problem of finding the minimum independent domination metric dimension of graphs. A vertex set of a connected graph resolves if every vertex of is uniquely identified by its vector of distances to the vertices in . A resolving set of is independent if no two vertices in are adjacent. A resolving set is dominating if every vertex of that does not belong to is a neighbor to some vertices in . The cardinality of the smallest resolving set of , the cardinality of the minimal independent resolving set, and the cardinality of the minimal independent domination resolving set are the metric dimension of , independent metric dimension of , and the independent domination metric dimension of , respectively.Refference:
I. A. Khan, G. Haidar, N. Abbas, M. U. I. Khan, A. U. K. Niazi, A. U. I. Khan. : ‘Metric dimensions of bicyclic graphs’. Mathematics. Vol. 11(4), pp. 869, 2023. 10.3390/math11040869
II. A. Mofidi. : ‘On dominating graph of graphs, median graphs, partial cubes and complement of minimal dominating sets’. Graphs and Combinatorics. Vol. 39(5), pp. 104, 2023. 10.1007/s00373-023-02595-4
III. A. Samanta Adhya, S. Mondal, S. Charan Barman. : ‘Edge-vertex domination on interval graphs’. Discrete Mathematics, Algorithms and Applications. Vol. 16(02), pp. 2350015, 2024. 10.1142/S1793830923500150
IV. B. Mohamed. : ‘A comprehensive survey on the metric dimension problem of graphs and its types’. International Journal of Theoretical and Applied Mechanics. Vol. 9(1), pp. 1–5, 2023.
V. B. Mohamed, M. Amin. : ‘Domination number and secure resolving sets in cyclic networks’. Applied and Computational Mathematics. Vol. 12(2), pp. 42–45, 2023.
VI. C. Zhang, G. Haidar, M. U. I. Khan, F. Yousafzai, K. Hila, A. U. I. Khan. : ‘Constant time calculation of the metric dimension of the join of path graphs’. Symmetry. Vol. 15(3), pp. 708, 2023. 10.3390/sym15030708
VII. D. Garijo, A. González, A. Márquez. : ‘The difference between the metric dimension and the determining number of a graph’. Applied Mathematics and Computation. Vol. 249, pp. 487–501, 2014. 10.1016/j.amc.2014.10.004
VIII. H. Al-Zoubi, H. Alzaareer, A. Zraiqat, T. Hamadneh, W. Al-Mashaleh. : ‘On ruled surfaces of coordinate finite type’. WSEAS Transactions on Mathematics. Vol. 21, pp. 765–769, 2022. 10.37394/23206.2022.21.87
IX. I. M. Batiha, B. Mohamed. : ‘Binary rat swarm optimizer algorithm for computing independent domination metric dimension problem’. Mathematical Models in Engineering. Vol. 10(3), pp. 119–132, 2024. 10.21595/mme.2024.24037
X. I. M. Batiha, B. Mohamed, I. H. Jebril. : ‘Secure metric dimension of new classes of graphs’. Mathematical Models in Engineering. Vol. 10(3), pp. 161–167, 2024. 10.21595/mme.2024.24038
XI. I. M. Batiha, J. Oudetallah, A. Ouannas, A. A. Al-Nana, I. H. Jebril. : ‘Tuning the fractional-order PID-Controller for blood glucose level of diabetic patients’. International Journal of Advances in Soft Computing and its Applications. Vol. 13, pp. 1–10, 2021. https://www.i-csrs.org/Volumes/ijasca/2021.2.1.pdf
XII. I. M. Batiha, M. Amin, B. Mohamed, H. I. Jebril. : ‘Connected metric dimension of the class of ladder graphs’. Mathematical Models in Engineering. Vol. 10, pp. 65–74, 2024. 10.21595/mme.2024.23934
XIII. I. M. Batiha, N. Anakira, A. Hashim, B. Mohamed. : ‘A special graph for the connected metric dimension of graphs’. Mathematical Models in Engineering. Vol. 10, pp. 1–8, 2024. 10.21595/mme.2024.24176
XIV. I. M. Batiha, N. Anakira, B. Mohamed. : ‘Algorithm for finding domination resolving number of a graph’. Journal of Mechanics of Continua and Mathematical Sciences. Vol. 19, pp. 18–23, 2024. 10.26782/jmcms.2024.09.00003
XV. I. M. Batiha, S. A. Njadat, R. M. Batyha, A. Zraiqat, A. Dababneh, S. Momani. : ‘Design fractional-order PID controllers for single-joint robot ARM model’. International Journal of Advances in Soft Computing and its Applications. Vol. 14, pp. 97–114, 2022. 10.15849/IJASCA.220720.07
XVI. K. Nie, K. Xu. : ‘The doubly metric dimension of corona product graphs’. Filomat. Vol. 37(13), pp. 4375–4386, 2023. 10.2298/FIL2313375N
XVII. M. Salman, N. Rasheed, M. Ur Rehman, J. Cao. : ‘On the metric determination of linear dependence graph’. Optimal Control Applications and Methods. Vol. 44(3), pp. 1632–1647, 2023. 10.1002/oca.2923
XVIII. M. Vasuki, R. Shanmugapriya, M. Mahdal, R. Cep. : ‘A study on fuzzy resolving domination sets and their application in network theory’. Mathematics. Vol. 11(2), pp. 317, 2023. 10.3390/math11020317
XIX. R. Alfarisi, S. K. S. Husain, L. Susilowati, A. I. Kristiana. : ‘Dominant mixed metric dimension of graph’. Statistics, Optimization & Information Computing. Vol. 12(6), pp. 1826–1833, 2024. 10.19139/soic-2310-5070-1925
XX. S. Khuller, B. Raghavachari, A. Rosenfeld. : ‘Landmarks in graphs’. Discrete Applied Mathematics. Vol. 70(3), pp. 217–229, 1996. 10.1016/0166-218X(95)00106-2
XXI. T. Mazidah, I. H. Agustin, R. Nisviasari. : ‘Resolving independent domination number of some special graphs’. Journal of Physics: Conference Series. Vol. 1832(1), pp. 012022, 2021. 10.1088/1742-6596/1832/1/012022