ENERGY MANAGEMENT IN HYBRID PV-WIND-BATTERY STORAGE-BASED MICROGRID USING MONTE CARLO OPTIMIZATION TECHNIQUE

Authors:

Bibhu Prasad Ganthia,Praveen B. M.,S. R. Barkunan, A. V. G. A. Marthanda,N. M. G. Kumar,S. Kaliappan,

DOI NO:

https://doi.org/10.26782/jmcms.2024.12.00014

Keywords:

Battery Storage,Energy Management System,Microgrids,Monte Carlo Optimization,Optimization,Photovoltaic (PV),Uncertainties,Wind Energy,

Abstract

The paper presents an efficient energy management system designed for a small-scale hybrid microgrid incorporating wind, solar, and battery-based energy generation systems using three types of Monte Carlo simulation techniques. The heart of the proposed system is the energy management system, which is responsible for maintaining power balance within the microgrid. The EMS continuously monitors variations in renewable energy generation and load demand and adjusts the operation of the energy conversion systems and battery storage to ensure optimal performance and reliability. The primary objective of the energy management system is to maintain power balance within the microgrid, even in the face of fluctuations in renewable energy generation and load demand. This involves dynamically adjusting the operation of the renewable energy sources and battery storage system to match the instantaneous power requirements of the microgrid. Overall, the paper presents a comprehensive approach to designing and implementing the Monte Carlo technique to extract maximum energy profit using the hybrid microgrid. By integrating renewable energy sources with energy storage and advanced control algorithms, the proposed system aims to enhance the reliability, stability, and sustainability of the microgrid's power supply.

Refference:

I. Alonso, O., Sanchis, P., Gubia, E., & Marroyo, L. (2003). Cascaded H-bridge multilevel converter for grid-connected photovoltaic generators with independent maximum power point tracking of each solar array. Proceedings of the 34th IEEE Power Electronics Specialists Conference, Acapulco, Mexico, 15–19 June 2003, 2, 731–735. New York: IEEE.
II. Alvarez, G., Moradi, H., Smith, M., & Zilouchian, A. (2017). Modeling a grid-connected PV/Battery microgrid system with MPPT controller. 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), 2941–2946.
III. Almada, J., Leão, R., Sampaio, R., & Barroso, G. (2016). A centralized and heuristic approach for energy management of an AC microgrid. Renewable and Sustainable Energy Reviews, 60, 1396–1404.
IV. AlKassem, A., Draou, A., Alamri, A., & Alharbi, H. (2022). Design analysis of an optimal microgrid system for the integration of renewable energy sources at a university campus. Sustainability, 14(7), 4175. https://doi.org/10.3390/su14074175.
V. Arcos-Aviles, D., Pascual, J., Guinjoan, F., Marroyo, L., Sanchis, P., & Marietta, M. P. (2017). Low complexity energy management strategy for grid profile smoothing of a residential grid-connected microgrid using generation and demand forecasting. Applied Energy, 205, 69–84.
VI. Cabrera-Tobar, A., Massi Pavan, A., Petrone, G., & Spagnuolo, G. (2022). A review of the optimization and control techniques in the presence of uncertainties for the energy management of microgrids. Energies, 15(23), 9114. https://doi.org/10.3390/en15239114.
VII. Cecati, C., Dell’Aquila, A., Liserre, M., & Monopoli, V. G. (2003). A passivity-based multilevel active rectifier with adaptive compensation for traction applications. IEEE Transactions on Industry Applications, 39(5), 1404–1413.
VIII. Franquelo, L. G., Rodriguez, J., Leon, J. I., Kouko, S., & Portillo, R. (2008). The age of multilevel converters arrives. IEEE Industrial Electronics Magazine, 2(2), 28–39.
IX. Genikomsakis, K. N., Lopez, S., Dallas, P. I., & Ioakimidis, C. S. (2017). Simulation of wind-battery microgrid based on short-term wind power forecasting. Applied Sciences, 7(11), 1142. https://doi.org/10.3390/app7111142.
X. Gonzalez, R., Gubia, E., Lopez, J., & Marroyo, L. (2008). Transformerless single-phase multilevel-based photovoltaic inverter. IEEE Transactions on Industrial Electronics, 55(7), 2694–2702.
XI. Jigar, S. S., Lee, K., Patel, H., Patel, N., & Patel, D. (2022). Energy management system of microgrid using optimization approach. IFAC-Papers On Line, 55(9), 280–284. https://doi.org/10.1016/j.ifacol.2022.07.049.
XII. Kjaer, S. B., Pedersen, J. K., & Blaabjerg, F. (2005). A review of single-phase grid-connected inverters for photovoltaic modules. IEEE Transactions on Industry Applications, 41(5), 1292–1306.
XIII. Lai, J.-S., & Peng, F. Z. (1996). Multilevel converters—A new breed of power converters. IEEE Transactions on Industry Applications, 32(3), 509–517.
XIV. Ozdemir, E., Ozdemir, S., & Tolbert, L. M. (2009). Fundamental-frequency-modulated six-level diode-clamped multilevel inverter for three-phase stand-alone photovoltaic system. IEEE Transactions on Industrial Electronics, 56(11), 4407–4415.
XV. Rey, J., Segura, F., & Andújar, J. M. (2023). Profitability of hydrogen-based microgrids: A novel economic analysis in terms of electricity price and equipment costs. Electronics, 12, 4355. https://doi.org/10.3390/electronics12204355.
XVI. Rodriguez, J. R., Dixon, J. W., Espinoza, J. R., Pontt, J., & Lezana, P. (2005). PWM regenerative rectifiers: State of the art. IEEE Transactions on Industrial Electronics, 52(1), 5–22.
XVII. Rodriguez, J. R., Lai, J.-S., & Peng, F. Z. (2002). Multilevel inverters: A survey of topologies, control, and applications. IEEE Transactions on Industrial Electronics, 49(4), 724–738.
XVIII. Sirviö, K., Kauhaniemi, K., Memon, A. A., Laaksonen, H., & Kumpulainen, L. (2020). Functional analysis of the microgrid concept applied to case studies of the Sundom Smart Grid. Energies, 13(16), 4223. https://doi.org/10.3390/en13164223.
XIX. Tarek, M. S. I., Siam, A., Zia, M., & Rahman, M. M. (2018). A novel five-level inverter topology with reactive power control for grid-connected PV system. 2018 International Conference on Smart Grid and Clean Energy Technologies (ICSGCE 2018), 101–105. IEEE.
XX. Tolbert, L. M., Peng, F. Z., & Habetler, T. G. (1999). Multilevel converters for large electric drives. IEEE Transactions on Industry Applications, 35(1), 36–44.
XXI. Ganthia, B. P., & Upadhyaya, M. (2021). Bridgeless AC/DC Converter & DC-DC Based Power Factor Correction with Reduced Total Harmonic Distortion. Design Engineering, 2012-2018.
XXII. Ganthia, B. P., Pradhan, R., Das, S., & Ganthia, S. (2017). Analytical study of MPPT based PV system using fuzzy logic controller. 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing
XXIII. Ganthia, B. P., Sahu, P. K., & Mohanty, A. Minimization Of Total Harmonic Distortion Using Pulse Width Modulation Technique. IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-ISSN, 2278-1676.
XXIV. Ganthia, B.P., & Praveen, B.M. (2023). Review on Scenario of Wind Power Generations in India. Electrical Engineering, 13(2), 1-27p.
XXV. Ganthia, B.P., Barik, S., & Nayak, B. (2020). Application of hybrid facts devices in DFIG based wind energy system for LVRT capability enhancements. J. Mech. Cont. Math. Sci., 15(6), 245-256.
XXVI. Ganthia, B.P., Barik, S.K., & Nayak, B. (2020). Transient analysis of grid integrated stator voltage oriented controlled type-III DFIG driven wind turbine energy system. Journal of Mechanics of Continua and Mathematical Sciences, 15(6), 139-157.
XXVII. Ganthia, B.P., Monalisa Mohanty, Sushree Shataroopa Mohapatra, Rosalin Pradhan, Subhasmita Satapathy, Shilpa Patra, & Sunita Pahadasingh. (2023). Artificial Neural Network Optimized Load Forecasting of Smartgrid using MATLAB. Control Systems and Optimization Letters, 1(1), 46-51.
XXVIII. Ganthia, B.P., Mannam, P., & Manchireddy, S. (2021). Grid Tied PV with Reduced THD Using NN and PWM Techniques. Design Engineering, 2019-2027.
XXIX. Jena, S., Mishra, S., Ganthia, B. P., & Samal, S. K. (2022). Load Frequency Control of a Four-Area Interconnected Power System Using JAYA Tuned PID Controller and Derivative Filter. In Sustainable Energy and Technological Advancements: Proceedings of ISSETA 2021 (pp. 497-511). Singapore: Springer Singapore.
XXX. Kabat, S.R., Panigrahi, C.K., & Ganthia, B.P. (2022). Comparative analysis of fuzzy logic and synchronous reference frame controlled LVRT capability enhancement in wind energy system using DVR and STATCOM. In Sustainable Energy and Technological Advancements: Proceedings of ISSETA 2021 (pp. 423-433). Singapore: Springer Singapore.
XXXI. Mannam, P., Manchireddy, S., & Ganthia, B. P. (2021). Grid Tied PV with Reduced THD Using NN and PWM Techniques. Design Engineering, 2019-2027.
XXXII. Mohanty, R., Chatterjee, D., Mohanty, S., Dhanamjayulu, C., & Khan, B. (2023). THD Reduction of Improved Single Source MLI Using Upgraded Black Widow Optimization Algorithm. International Transactions on Electrical Energy Systems, Article ID 6724716, 16 pages. https://doi.org/10.1155/2023/6724716.
XXXIII. Refaai, M. R. A., Dhanesh, L., Ganthia, B. P., Mohanty, M., Subbiah, R., & Anbese, E. M. (2022). Design and Implementation of a Floating PV Model to Analyse the Power Generation. International Journal of Photoenergy, Article ID 8004425.

View Download