Authors:
Iqbal M. Batiha,Iqbal H. Jebril,Basma Mohamed,DOI NO:
https://doi.org/10.26782/jmcms.2024.10.00007Keywords:
Distance,Dominant Metric Dimension,Dominant Resolving Set,Metric Dimension,Resolving Set,Abstract
In this paper, we examine the dominating metric dimension of various graph types. A resolving set is a subset of vertices that uniquely identifies each vertex in the graph based on its distances to others, and the metric dimension is the minimum size of such a set. A dominating set ensures each vertex is adjacent to at least one vertex in the set. When a set is both resolving and dominating, it forms a dominating resolving set, and the smallest such set defines the dominating metric dimension, denoted as . We calculate the dominating metric dimension for the splitting graph of book graph, globe graph, tortoise graph, and graph.Refference:
I. A. H. Karbasi, R. E. Atani: ‘Application of dominating sets in wireless sensor networks’, International Journal of Security and Its Applications. Vol. 7, pp. 185-202, 2013.
II. A. Sebő, E. Tannier: ‘On metric generators of graphs’. Mathematics of Operations Research. Vol. 29, pp. 383-393, 2004. 10.1287/moor.1030.0070
III. B. Deng, M. F. Nadeem, M. Azeem: ‘On the edge metric dimension of different families of möbius networks’. Mathematical Problems in Engineering. Vol. 2021, p. 623208, 2021. 10.1155/2021/6623208
IV. B. Mohamed, L. Mohaisen, M. Amin: ‘Binary Archimedes optimization algorithm for computing dominant metric dimension problem’. Intelligent Automation & Soft Computing. Vol. 38, pp. 19-34, 2023. 10.32604/iasc.2023.031947
V. B. Mohamed, L. Mohaisen, M. Amin: ‘Binary equilibrium optimization algorithm for computing connected domination metric dimension problem’. Scientific Programming. Vol. 2022, p. 6076369, 2022. 10.1155/2022/6076369
VI. B. Mohamed, L. Mohaisen, M. Amin: ‘Computing connected resolvability of graphs using binary enhanced Harris Hawks optimization’. Intelligent Automation and Soft Computing. Vol. 36, pp. 2349-2361, 2023. 10.32604/iasc.2023.032930
VII. B. Mohamed, M. Amin: ‘Domination number and secure resolving sets in cyclic networks’. Applied and Computational Mathematics. Vol. 12, pp. 42-45, 2023. 10.11648/j.acm.20231202.12
VIII. B. Mohamed, M. Amin: ‘Some new results on domination and independent dominating set of some graphs’. Applied and Computational Mathematics. Vol. 13, pp. 53-57, 2024. 10.11648/j.acm.20241303.11
IX. B. Mohamed, M. Amin: ‘The metric dimension of subdivisions of Lilly graph, tadpole graph and special trees’. Applied and Computational Mathematics. Vol. 12, pp. 9-14, 2023. 10.11648/j.acm.20231201.12
X. B. Mohamed: ‘Metric dimension of graphs and its application to robotic navigation’. International Journal of Computer Applications. Vol. 184, pp. 1-3, 2022. 10.5120/ijca2022922090
XI. F. Harary, R. A. Melter: ‘On the metric dimension of a graph’. Combinatoria. Vol. 2, pp. 191-195, 1976.
XII. G. Chartrand, L. Eroh, M. A. Johnson, O. R. Ollermann: ‘Resolvability in graphs and the metric dimension of a graph’. Discrete Applied Mathematics. Vol. 105, pp. 99-113, 2000. 10.1016/S0166-218X(00)00198-0
XIII. H. Al-Zoubi, H. Alzaareer, A. Zraiqat, T. Hamadneh, W. Al-Mashaleh: ‘On ruled surfaces of coordinate finite type’. WSEAS Transactions on Mathematics. Vol. 21, pp. 765–769, 2022. 10.37394/23206.2022.21.87
XIV. H. M. A. Siddiqui, M. Imran: ‘Computing the metric dimension of wheel related graphs’. Applied Mathematics and Computation. Vol. 242, pp. 624-632, 2014. 10.1016/j.amc.2014.06.006
XV. I. M. Batiha, B. Mohamed: ‘Binary rat swarm optimizer algorithm for computing independent domination metric dimension problem’. Mathematical Models in Engineering. Vol. 10, pp. 6-13, 2024. 10.21595/mme.2024.24037
XVI. I. M. Batiha, B. Mohamed, I. H. Jebril: ‘Secure metric dimension of new classes of graphs’. Mathematical Models in Engineering. Vol. 10, pp. 1-6, 2024. 10.21595/mme.2024.24168
XVII. I. M. Batiha, J. Oudetallah, A. Ouannas, A. A. Al-Nana, I. H. Jebril: ‘Tuning the fractional-order PID-Controller for blood glucose level of diabetic patients’. International Journal of Advances in Soft Computing and its Applications. Vol. 13, pp. 1–10, 2021. https://www.i-csrs.org/Volumes/ijasca/2021.2.1.pdf
XVIII. I. M. Batiha, M. Amin, B. Mohamed, H. I. Jebril: ‘Connected metric dimension of the class of ladder graphs’. Mathematical Models in Engineering. Vol. 10, pp. 65–74, 2024. 10.21595/mme.2024.23934
XIX. I. M. Batiha, N. Anakira, A. Hashim, B. Mohamed: ‘A special graph for the connected metric dimension of graphs’. Mathematical Models in Engineering. Vol. 10, pp. 1-8, 2024. 10.21595/mme.2024.24176
XX. I. M. Batiha, N. Anakira, B. Mohamed: ‘Algorithm for finding domination resolving number of a graph’. Journal of Mechanics of Continua and Mathematical Sciences. Vol. 19, pp. 18-23, 2024. 10.26782/jmcms.2024.09.00003
XXI. I. M. Batiha, S. A. Njadat, R. M. Batyha, A. Zraiqat, A. Dababneh, S. Momani: ‘Design fractional-order PID controllers for single-joint robot ARM model’. International Journal of Advances in Soft Computing and its Applications. Vol. 14, pp. 97–114, 2022. 10.15849/IJASCA.220720.07
XXII. J. L. Hurink, T. Nieberg: ‘Approximating minimum independent dominating sets in wireless networks’. Information Processing Letters. Vol. 109, pp. 155-160, 2008. 10.1016/j.ipl.2008.09.021
XXIII. K. Wijaya, E. Baskoro, H. Assiyatun, D. Suprijant: ‘Subdivision of graphs in R(mK_2,P_4)’. Heliyon. Vol. 6, p e03843, 2020. 10.1016/j.heliyon.2020.e03843
XXIV. L. Susilowati, I. Sa’adah, R. Z. Fauziyyah, A. Erfanian: ‘The dominant metric dimension of graphs’. Heliyon. Vol. 6, e03633, 2020. 10.1016/j.heliyon.2020.e03633
XXV. M. R. Garey, D. S. Johnson: ‘Computers and Intractability: A Guide to the Theory of NP-Completeness’. Freeman, 1979.
XXVI. P. Singh, S. Sharma, S. K. Sharma, V. K. Bhat: ‘Metric dimension and edge metric dimension of windmill graphs’. AIMS Mathematics. Vol. 6, pp. 9138-9153, 2021. 10.3934/math.2021531
XXVII. P. J. Slater: ‘Leaves of trees’. Congressus Numerantium. Vol. 14, pp. 549–559, 1975.
XXVIII. R. A. Melter, I. Tomescu: ‘Metric bases in digital geometry’. Computer Vision, Graphics, and Image Processing. Vol. 25, pp. 113-121, 1984. 10.1016/0734-189X(84)90051-3
XXIX. R. Manjusha, A. S. Kuriakose: ‘Metric dimension and uncertainty of traversing robots in a network’. International Journal on Applications of Graph Theory in Wireless Ad Hoc Networks and Sensor Networks. Vol.7, pp. 1-9, 2015. 10.5121/jgraphoc.2015.7301
XXX. R. P. Adirasari, H. Suprajitno, L. Susilowati: ‘The dominant metric dimension of corona product graphs’. Baghdad Science Journal. Vol. 18, p. 0349, 2021. 10.21123/bsj.2021.18.2.0349
XXXI. S. Nazeer, M. Hussain, F. A. Alrawajeh, S. Almotairi: ‘Metric dimension on path-related graphs’. Mathematical Problems in Engineering. Vol. 2021, p. 2085778, 2021. 10.1155/2021/2085778
XXXII. T. W. Haynes, S. T. Hedetneimi, P. J. Slater: ‘Domination in Graphs: Advanced Topics’. Marcel Dekker Inc, New York, 1998.
XXXIII. V. Chvátal: ‘Mastermind’. Combinatorica. Vol. 3, pp. 325-329, 1983. 10.1007/BF02579188
XXXIV. Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffmann, M. Mihal’ak, L. S. Ram: ‘Network discovery and verification’. IEEE Journal on Selected Areas in Communications. Vol. 24, pp. 2168-2181, 2006. 10.1109/JSAC.2006.884015
View Download