Authors:
A. L. Olutimo,O. J. Oni,F. A. Williams,J. R. Akewushola,F. A. Abass,DOI NO:
https://doi.org/10.26782/jmcms.2024.10.00005Keywords:
Stability,Basic Reproduction Number,Vaccination,Diarrhea Model,Lyapunov function,Abstract
This study introduces a six-compartmental mathematical model (S, , , E, I, R) to examine the impact of administering a double dose vaccine on the dynamic spread of diarrhea within a community. The mathematical analysis shows the existence of equilibrium points for both disease-free and endemic states in the model. The basic reproduction number was determined using the Next Generation Matrix. Analysis has shown that the basic reproduction number which indicates the disease-free equilibrium point is locally asymptotically stable. Also, using a suitable Lyapunov functional for the model system expressed in state variables and parameters defining the dynamic characteristics of spread and control strategies of the rotavirus diarrhea to obtain the global stability of disease-free equilibrium point over time. A numerical simulation was carried out by Wolfram Mathematica to show the effect of a second-dose vaccine. The inclusion of a double-dose vaccine has been found to have a significant effect on completely eliminating the outbreak of diarrhea. This is evidenced by the local and global stability results, which indicate that effective measures have been taken to prevent the reintroduction or transmission of the disease, and if there may be a risk of outbreaks or reemergence of the disease, very little continuous monitoring and intervention strategies are required to maintain control as this should be taken seriously by medical practitioners or policy health makers.Refference:
I. Adewale S. O., Olapade L. A., Ajao S. O., Adeniran G. A., : ’Analysis of diarrhea in the presence of vaccine’. Int. J. Sci. Eng. Res. Vol. 6, pp. 396–400, 2015.
II. Akinola E. I., Awoyemi B. E., Olopade I. A., Falomo O. D., Akinwumi T. O., : ’Mathematical analysis of a diarrhea model in the presence of vaccination and treatment waves with sensitivity analysis.’ J. Appl. Sci. Environ. Manage. Vol. 25, pp. 1107-1114, 2021. 10.4314/jasem.v25i7.2
III. Ardkaew J., Tongkumchum P., : ’Statistical modeling of childhood diarrhea in northeastern Thailand Southeast Asian’, J. Trop. Med. Pub. Health. Vol. 40, pp. 807–811, 2009.
IV. Berhe H. W., Makinde O. D., Theuri D. M.., : ’Parameter estimation and sensitivity analysis of dysentery diarrhea epidemic model’ J. Appl. Math. Article ID 8465747, 13 pages, 2019. 10.1155/2019/8465747
V. Bonyah E., Twagirumukiza G., Gambrah P., : ’Analysis of Diarrhea model with saturated incidence rate’. Open J. Math. Sci. Vol. 3, pp. 29–39, 2019. 10.30538/oms2019.0046
VI. Borisov M., Dimitrova N., Simeonov I., : ’Mathematical modeling and stability analysis of a two-phase biosystem’. Processes. Vol. 8, pp. 791, 2020. 10.3390/pr8070791
VII. Cherry B. R., Reeves M. J., Smith G., : ’Evaluation of bovine viral diarrhea virus control using mathematical model of infection dynamics’. Prev. Vet. Med. Vol. 33, pp. 91–108, 1998. 10.1016/S0167-5877(97)00050-0
VIII. Egbetade S. A., Salawu I. A., Fasanmade P. A., : ’Local stability of equilibrium points of sir mathematical model of infections diseases’. World J. Res. Rev. Vol. 6, pp. 79–81, 2018.
IX. Forde J. E., : ’Delay differential equation models in mathematical biology’ Doctoral Thesis, University of Michigan, United States of America. 2005. api.semanticscholar.org/CorpusID:125373845, hdl.handle.net/2027.42/125360
X. Lungu E., Chaturvedi O., Jeffrey M., Masupe S., : ’Rotavirus diarrhea and analysis through epidemic modeling’. J. Biomed. Eng. Inform. Vol. 4, pp. 21–37, 2018. 10.5430/jbei.v4n2p21
XI. Olutimo A. L., Adams D. O., : ’On the stability and boundedness of solutions of certain non-autonomous delay differential equation of third order’. Appl. Math. Vol. 7, pp. 457–467, 2016. 10.4236/am.2016.76041
XII. Olutimo A. L., Adams D. O., Abdurasid A. A., : ’Stability and boundedness analysis of a prey-predator system with predator cannibalism’ J. Nig. Math. Soc. Vol. 41, pp. 275–286, 2022. ojs.ictp.it/jnms
XIII. Olutimo A. L., Akinmoladun O. M., Omoko I. D., : ’Stability and boundedness analysis of Lotka-Volterra prey-predator model with prey refuge and predator cannibalism’. J. Comp. Model. Vol. 12, pp. 5–18, 2022. 10.47260/jcomod/1212
XIV. Olutimo A. L., Williams F. A., Adeyemi M. O., Akewushola J. R., : ’Mathematical modeling of diarrhea with vaccination and treatment factor’. J. Adv. Math. Comput. Sci. Vol. 39, pp. 59–72, 2024. 10.9734/jamcs/2024/v39i51891